Echocardiographic diagnosis of fetal heart defects in mid trimester

I A PARNESSE,* S B YEAGER,† S P SANDERS,* B BENACERRAF,‡ S D COLAN,* AND R VANPRAAGH¶

Departments of *Pediatrics and ¶Pathology, Harvard Medical School; *Department of Cardiology, Children's Hospital; and ‡Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, †Department of Pediatrics, West Virginia School of Medicine, Morgantown, and ‡Department of Pediatrics, University of Vermont School of Medicine, Burlington, USA

SUMMARY One hundred and thirty five consecutive fetuses of between 16 and 23 weeks' gestation that were considered to be at high risk of having structural heart defects were examined prospectively to determine the reliability of echocardiography for diagnosing such defects in mid trimester. Each echocardiogram was done in a standard manner and cardiac anatomy was analysed segmentally. Twelve fetuses were excluded from analysis because of lack of follow up. Of the remaining 123 fetuses, 109 had no evidence of heart disease when followed up. In this group the prenatal echocardiogram was normal in 105 and technically inadequate in four; thus there were no false positive diagnoses of heart disease in fetuses subsequently shown to have normal hearts. Fourteen had heart defects at follow up. The serious defect was correctly diagnosed prenatally in 10 of 14 cases, whereas in the other four the prenatal echocardiogram was considered normal. Some errors were made in diagnosing associated segmental defects particularly if the heart disease was complicated. Therapeutic abortion was carried out in seven cases; in five of the fetuses the prenatally diagnosed heart defect was the sole or an important contributing reason for the abortion. We conclude that echocardiography is a reliable method for diagnosing many heart defects in the mid trimester.

Ultrasonography has become a valuable and reliable technique for prenatal diagnosis of many fetal abnormalities.1 2 Techniques have been described for performing prenatal two dimensional,3-6 as well as M mode,5-8 and Doppler9 10 echocardiography. These investigations have shown that prenatal echocardiography can identify normal cardiac anatomy at gestational ages ranging from about 17 weeks to full term. Many structural heart defects have been diagnosed in older fetuses11-15 with echocardiography, but there are few reports of the prospective diagnosis of heart defects in fetuses of less than 24 weeks' gestation.6 13 16-18 The accuracy of prenatal echocardiography has not been prospectively evaluated for the diagnosis of complex cardiac defects segment by segment, yet management of pregnancies at high risk of congenital heart defects requires diagnostic methods that are reliable at a stage of gestation when the option of terminating the pregnancy is still available.

We investigated the use of prenatal echocardiography for diagnosing structural heart defects in fetuses of less than 24 weeks' gestation in a population considered at high risk of congenital heart disease.

Subjects and methods

Between December 1982 and July 1986 we examined 135 consecutive fetuses of less than 24 weeks' gestation in 133 pregnancies. Eighty examinations were done at the Children's Hospital, Boston, 41 were at West Virginia University Hospital (December 1982 to June 1985), and nine at the Medical Center Hospital of Vermont (July 1985 to June 1986). Five fetuses underwent a second examination either as a follow up for hydrops or because the first examination was technically inadequate. Twelve fetuses were excluded from the study: nine were lost to follow up, two died in utero and did not undergo necropsy, and one was therapeutically aborted without necropsy. The gesta-
tional ages of the 123 included in the study ranged from 16 to 23 weeks at the time of examination (mean 20.5).

Risk factors prompting referral for prenatal echocardiography included: family history of congenital heart defect, maternal diabetes, maternal exposure to teratogenic agents during early gestation, chromosomal abnormalities or multiple congenital anomalies detected by prenatal screening, a congenital heart defect suspected on obstetric ultrasound examination, and fetal arrhythmias.

All examinations were done by three of the authors (IAP and SPS at the Children's Hospital, Boston, and SBY at West Virginia University Hospital and the Medical Center Hospital of Vermont). Prenatal echocardiograms were done with an ATL Mark 600 or Hewlett Packard cardiac imager equipped with a short or medium focus 5-0 mHz transducer. Two dimensional echocardiographic imaging was supplemented by two dimensional directed M mode or Doppler cardiography, or both, in patients with abnormal rhythms or anatomy. Examinations were recorded on 1/2" video cassette tape for review in real time, slow motion, and stop frame modes.

The examination was done with the mother supine or in a lateral decubitus position. If the position of the fetus was unfavourable for cardiac imaging, the mother was asked to change position or walk about the laboratory. If the position could not be improved, the patient was asked to return on another day for examination.

Each examination was done in a standard manner. The position and orientation of the fetus was determined using long and short axis scans of the fetal trunk. The fetal cardiovascular anatomy was then analysed segment by segment as previously described in neonates. Visceroatrial situs was calculated from a transverse view of the abdomen near the diaphragm by evaluating the respective positions of the inferior vena cava, the descending aorta, and the spine, as well as the pattern of the venous connections (fig 1). Long and short axis views of the trunk were used to provide short and long axis views, respectively, of the fetal heart. A modified long axis view of the trunk was used to visualise the aortic arch. Using these views, the veins, atriums, atrioventricular valves, ventricles, ventricular septum, semilunar valves, and great arteries were sequentially scanned in at least two orthogonal planes.

The recorded examination was reviewed and an anatomical diagnosis assigned using the nomenclature proposed by VanPraagh et al. If any examination failed to visualise any cardiac segment adequately, the study was considered technically inadequate.

Fig 1 Transverse sections of the fetal trunk at the level of the diaphragm showing the relative positions of the aorta, inferior vena cava and spine. a—Case 2. Note the right anterior position of the inferior vena cava and the left posterior position of the aorta. b—Case 8 (heterotaxy). A dilated azygos vein is posterior to the aorta associated with absence of the renal to hepatic segment of the inferior vena cava. c—Case 9. Because of a left diaphragmatic hernia, the aorta and inferior vena cava are juxtaposed to the left of the spine (similar to asplenia). Ao: aorta, Az: azygos vein, IVC: inferior vena cava, l: left, r: right, Sp: spine, and p: posterior.
Echocardiographic diagnosis of fetal heart defects in mid trimester 1139

inadequate. Because, however, it was often difficult
to see pulmonary venous connections and the aortic
isthmus clearly, studies that defined these structures
indistinctly were considered technically adequate.
Technically inadequate examinations are reported
as such and were not excluded from analysis.

The result of each prenatal echocardiogram was
discussed with the parents, the referring obstetri-
cian, and (if concerned) the paediatric cardiologist.
The presumed limitations of the test, specifically for
the diagnosis of atrial septal defect, ventricular
septal defect, patent ductus arteriosus, coarctation
of the aorta, and minor abnormalities of the valves
were discussed with the parents before the examina-
tion and again afterward in those cases in which no
abnormality was detected.

If a cardiac defect was diagnosed, the nature of
the defect including anatomy, physiology, prog-
nosis, and possible postnatal treatment was ex-
plained to the parents and physicians. The parents
and primary physicians were encouraged to contact
us again after the examination if questions arose.
The decision to continue or terminate the pregnancy
was made by the parents in consultation with the
primary physician. If the pregnancy was continued
the parents were referred to a paediatric cardiologist
who made appropriate plans for perinatal manag-
ment.

The outcome of live births was found out by
telephone interview with a parent or primary
physician, or both, one month to one year post-
natally. The infant was considered normal if there
were no findings suggestive of a congenital heart
defect at routine paediatric physical examination
(n=109). All infants with clinically suspected
cardiac defects were examined by a paediatric
cardiologist. The results of clinical examination, two
dimensional echocardiography, cardiac catheteri-
sation, and angiography or surgical inspection, or
both, were obtained in these eight cases. Necropsy
reports were obtained in all 10 cases in which the
examination was performed.

Results

In 109 cases there was no evidence of congenital
heart disease at follow up. In 105 of these the pre-
natal echocardiogram was normal, and in the
other four cases the examination was technically
inadequate.

Fourteen of 123 (11%) were confirmed to have
heart defects either at clinical follow up or at
necropsy. A cardiac defect had been diagnosed
prenatally in 10 of the 14 cases. Six of these 10 were
therapeutically aborted and one fetus died in utero
at 33 weeks' gestation with severe hydrops fetalis.

Of the remaining three infants who were born alive,
two died in the neonatal period—one of the heart
defect and the other of neonatal hepatitis. The third
died at the age of 2½ months after a viral infection.
Necropsy confirmed the serious heart defects di-
agnosed by prenatal echocardiography in all 10
cases. Serious defects that were diagnosed were:
Ebstein's anomaly (n=1), tricuspid regurgitation
(n=1), pulmonary stenosis with hypoplastic right
ventricle (n=1), tetralogy of Fallot with pulmonary
atresia and complete common atrioventricular canal
(n=1), hypoplastic left heart syndrome (n=2), and
complex heart disease with heterotaxy (n=3) (table
1).

Defects were not diagnosed prenatally in four of
the 14 fetuses that were subsequently found to have
genital heart defects (table 2). The lesions in
those four cases were: patent ductus arteriosus
(n=1), moderate sized apical muscular ventricular
septal defect (n=1), midmuscular ventricular septal
defect (n=1), short segment coarctation of the aorta
(n=1), and atrial septal defect secundum (n=1). In
the infant with persistent patent ductus arteriosus
spontaneous closure occurred when a few weeks
old. The infant with coarctation and ventricular
septal defect had the coarctation repaired when 3
weeks old, and the ventricular septal defect subse-
quentely closed spontaneously. The other infant with
a ventricular septal defect (age 12 months) does not
at the time of writing seem to require operation. The
atrial septal defect secundum was an incidental
finding at necropsy following therapeutic abortion
for other abnormalities.

The parents of four fetuses with prenatally di-
agnosed heart defects chose to continue the preg-
nancies after counselling. Two of these fetuses
cases 4 and 7) were born alive but died in the
neonatal period despite management of the heart
defects. A third fetus (case 6) died in utero at 33
weeks' gestation of fetal hydrops. The remaining
fetus (case 10) was born at full term and underwent
palliative ligation of patent ductus arteriosus and
pulmonary artery banding. The infant subsequently
developed pneumonia and died when 2½ months
old.

Discussion

In our study, adequate two dimensional echocardio-
grams were obtained in 97% of fetuses before 24
weeks' gestation. We correctly excluded structural
heart defects in all fetuses that were subsequently
found to be normal and in which technically
adequate echocardiograms could be obtained; no
normal fetus was diagnosed as having a structural
heart defect by prenatal echocardiography.
<table>
<thead>
<tr>
<th>Case No</th>
<th>Gestational age (weeks)</th>
<th>Indication for examination</th>
<th>Echocardiographic diagnosis</th>
<th>Final diagnosis and method of confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 21</td>
<td>Potter's syndrome on ultrasonography Fetal hydrops</td>
<td>1 (S,D,S)* 2 Tricuspid regurgitation with dilated right atrium 3 Probable pulmonary stenosis</td>
<td>Therapeutic abortion (necropsy) 1 (S,D,S)* 2 Dilated right atrium</td>
<td></td>
</tr>
<tr>
<td>2 21</td>
<td>Abnormal heart on routine ultrasonography</td>
<td>1 (S,D,S)* 2 Severe Ebstein's anomaly 3 Tricuspid regurgitation with dilated right atrium</td>
<td>Therapeutic abortion (necropsy) 1 (S,D,S)* 2 Severe Ebstein's anomaly 3 Dilated right atrium</td>
<td></td>
</tr>
<tr>
<td>3 19</td>
<td>Abnormal heart on routine ultrasonography Other abnormalities</td>
<td>1 (S,D,S)* 2 Tricuspid regurgitation 3 Mild right ventricular hypoplasia 4 Infundibular and valvular pulmonary stenosis 5 Hypoplastic pulmonary arteries</td>
<td>4 Moderate stenosis of pulmonary valve Therapeutic abortion (necropsy) 1 (S,D,S)* 2 Dilated right atrium 3 Mild right ventricular hypoplasia 4 Infundibular and valvular pulmonary stenosis 5 Hypoplastic pulmonary arteries 6 Atrial septal defect secundum 7 Skeletal, gastrointestinal, genitourinary, and facial abnormalities</td>
<td></td>
</tr>
<tr>
<td>4 20</td>
<td>Previous child with congenital heart disease</td>
<td>1 (S,D,S)* 2 Hypoplastic right ventricle 3 Pulmonary atresia with hypoplastic pulmonary arteries 4 Intact ventricular septum</td>
<td>Neonatal death (necropsy) 1 (S,D,S)* 2 Hypoplastic right ventricle 3 Pulmonary atresia with hypoplastic pulmonary arteries</td>
<td></td>
</tr>
<tr>
<td>5 18</td>
<td>Previous child with congenital heart disease</td>
<td>1 (S,D,S)* 2 Hypoplastic left heart syndrome 3 Mitral atresia 4 No left ventricle seen 5 Hypoplastic aorta</td>
<td>Therapeutic abortion (necropsy) 1 (S,D,S)* 2 Hypoplastic left heart syndrome 3 Mitral atresia 4 No left ventricle seen 5 Hypoplastic aorta</td>
<td></td>
</tr>
<tr>
<td>6 22</td>
<td>Abnormal heart on routine ultrasonography</td>
<td>1 (S,D,S)* 2 Hypoplastic left heart syndrome 3 Mitral atresia 4 Hypoplastic left ventricle 5 Aortic atresia 6 Hypoplastic ascending aorta</td>
<td>Intrauterine death (33 weeks) (necropsy) 1 (S,D,S)* 2 Hypoplastic left heart syndrome 3 Mitral atresia 4 Aplastic left ventricle 5 Aortic atresia 6 Hypoplastic ascending aorta</td>
<td></td>
</tr>
<tr>
<td>7 23</td>
<td>Maternal diabetes</td>
<td>1 (S,D,S)* 2 Atrial septal defect primum 3 Complete common atrioventricular canal 4 Tetralogy of Fallot 5 Long segment pulmonary atresia 6 No mediastinal pulmonary arteries seen</td>
<td>Premature birth, hepatitis, neonatal death (necropsy) 1 (S,D,S)* 2 Atrial septal defect primum 3 Complete common atrioventricular canal 4 Tetralogy of Fallot 5 Long segment pulmonary atresia 6 Severe hypoplasia of branches of pulmonary artery</td>
<td></td>
</tr>
</tbody>
</table>
Table 1  Continued

<table>
<thead>
<tr>
<th>Case No</th>
<th>Gestational age (weeks)</th>
<th>Indication for examination</th>
<th>Echocardiographic diagnosis</th>
<th>Final diagnosis and method of confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>23</td>
<td>Abnormal heart on routine ultrasonography</td>
<td>1 (A,D,D)* Double outlet right ventricle, 2 Heterotaxy, 3 Interrupted inferior vena cava with ayzygos vein to superior vena cava, 4 Common atrium, 5 Complete common atioventricular canal, right ventricle dominant, 6 Left ventricular hypoplasia, 7 Anterior large aorta, 8 Hypoplastic pulmonary arteries</td>
<td>Therapeutic abortion (necropsy) 1 (A,D,D)* Double outlet right ventricle, 2 Heterotaxy, 3 Interrupted inferior vena cava with ayzygos vein to superior vena cava, 4 Common atrium, 5 Complete common atioventricular canal, right ventricle dominant, 6 Left ventricular hypoplasia, 7 Anterior large aorta, 8 Hypoplastic pulmonary arteries, 9 Ipsilateral pulmonary venous connection, 10 Infundibular and valvar pulmonary stenosis</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>Abnormal heart on routine ultrasonography; Other abnormalities including left diaphragmatic hernia</td>
<td>1 (A,?,L)* Double outlet right ventricle, 2 Heterotaxy (asplenia), 3 Inferior vena cava and abdominal aorta transposed to left, 4 Pulmonary venous connection not seen, 5 Common atrium, 6 Common atioventricular valve, 7 Single right ventricle, 8 Large anterior aorta, 9 Valvular pulmonary stenosis with small pulmonary artery</td>
<td>Therapeutic abortion (necropsy) 1 (S,D,S)* Double outlet right ventricle, 2 Not confirmed, 3 Right inferior vena cava transposed to left, 4 Anomalous pulmonary venous connection to left ventricular vein, 5 Hypoplastic left atrium, dilated right atrium, atrial septal defect secundum, 6 Mitral atresia, large tricuspid valve, 7 Single right ventricle, 8 Large anterior pulmonary artery, 9 Subvalvar and valvar aortic stenosis, 10 Left diaphragmatic hernia, 11 Skeletal and neurological abnormalities Died at 2½ months (necropsy)</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>Fetal bradycardia</td>
<td>1 (A,?,N)* 2 Dextrocardia 3 No inferior vena cava seen, 4 Common atrium, 5 Dilated coronary sinus, 6 Large atioventricular canal type ventricular septal defect, 7 Normally related great arteries</td>
<td>1 (A,L,N)* 2 Dextrocardia 3 Interrupted inferior vena cava with ayzygos vein to right superior vena cava, 4 Hypoplastic left atrium without venous connection, 5 Dilated coronary sinus, also right superior vena cava, 6 Moderate posterior muscular ventricular septal defect, 7 Normally related great arteries</td>
</tr>
</tbody>
</table>

*Segmental notation described by VanPraagh et al.29

VanPraagh's segmental nomenclature29—The segmental set notation formulated by VanPraagh is a shorthand description of the situs or spatial organization of the three major cardiac segments; the three letters enclosed in the brackets denote the situs of the atriums, ventricles, and great arteries, in that order. Atrial situs is designated solitus ("S"), inversus ("I"), or ambiguous ("A"). Ventricular situs, occupying the second position in the set, is described according to the direction of embryonic heart tube looping; dextro-loop ("D") in situs solitus and levo-loop ("L") in situs inversus. "S" or "I" in the last position denote situs or inversus normally related great arteries, respectively. "D", "L", or "A" in the third position refer to the spatial orientation of the aortic valve and the pulmonary valve—that is, to the right, to the left, or directly anterior, respectively, in the setting of the various malpositions of the great arteries. The type of malposition of the great arteries cannot be inferred from the set notation and must be stated separately. The atioventricular alignments (connections) may be inferred from the notation on the presumption that the alignments will correlate with the atioventricular situs associations. For example, (S,D) and (S,L) imply concordant or discordant atioventricular alignments, respectively, in atrial situs solitus. Disharmony between atioventricular situs and alignments, which rarely occurs, must be stated. Ventriculoarterial alignments are concordant if the great arteries are normally related—that is (S,S) or (L,L). Otherwise the ventriculoarterial alignments will be clear from the stated conotruncal malformation—for example, discordant in transposition of the great arteries or concordant in anatomically corrected malposition.
Table 2  Heart defects not diagnosed prenatally

<table>
<thead>
<tr>
<th>Case No</th>
<th>Gestational age (weeks)</th>
<th>Indication for examination</th>
<th>Echocardiographic diagnosis</th>
<th>Final diagnosis and method of confirmation</th>
</tr>
</thead>
</table>
| 11      | 20                      | Previous child with congenital heart disease | 1 \{S,D,S\}*  
2 No structural heart defects | Born alive (angiography, echocardiography, clinical observation)  
1 \{S,D,S\}*  
2 Moderate midmuscular ventricular septal defect  
3 Severe short segment coarctation of aorta |
| 12      | 20                      | Previous child with congenital heart disease | 1 \{S,D,S\}*  
2 No structural heart defects | Born alive (echocardiography, clinical observation)  
1 \{S,D,S\}*  
2 Moderate apical muscular ventricular septal defect |
| 13      | 23                      | Fetal arrhythmia             | 1 \{S,D,S\}*  
2 No structural heart defects | Born alive (clinical observation)  
1 \{S,D,S\}*  
2 Patent ductus arteriosus |
| 14      | 20                      | Amniocentesis 46,3p*  
Other abnormalities | 1 \{S,D,S\}*  
2 No structural heart defects | Therapeutic abortion (necropsy)  
1 \{S,D,S\}*  
2 Atrial septal defect secundum  
3 Renal and skeletal abnormalities |

*Segmental notation described by VanPraagh et al. 29

Our results also show that many forms of congenital heart disease, including complex defects, can be diagnosed in fetuses before 24 weeks’ gestation using two dimensional echocardiography. Thus the information necessary to make rational decisions about continuing or terminating pregnancies at high risk of congenital heart defects can be obtained in nearly all patients. In five of our cases the knowledge that the fetuses had severe heart defects was influential in the decision to terminate the pregnancy. In the three cases in which severe cardiac defects were diagnosed prenatally and the pregnancies were carried to full term, the family and responsible physician were prepared for the birth of an infant with congenital heart disease.

The three complex cases of heterotaxy illustrate both the potential for accurate segmental diagnosis and the potential for error in such an analysis. In case 8 a complex defect was correctly diagnosed in nearly all details. Persistent left superior vena cava and ipsilateral pulmonary venous connection were not seen prenatally (figs 1 and 2, and table 2). In case 9, though double outlet single right ventricle was correctly diagnosed, several errors were made in the segmental diagnosis. The inferior vena cava and descending aorta were to the left of the spine at the diaphragm suggesting visceroatrial heterotaxy (fig 1c). Displacement of the liver to the left by the left diaphragmatic hernia disorted the relationship between the inferior vena cava and spine in this fetus with normal visceroatrial situs. The anomalous pulmonary venous connection to the left vertical vein was not recognised prenatally. The hypoplastic left atrium with mitral atresia could not be seen adequately, and the dilated right atrium and tricuspid valve were misinterpreted as a common atrium and common atrioventricular valve. Functionally, the most important error was in mistaking the enlarged pulmonary artery and ductus arteriosus for a large aorta. We believe that this was partly a result of our heightened suspicion of asplenia (which is commonly associated with malposition of the great arteries and pulmonary stenosis), and partly because of the inability to resolve as separate structures the hypoplastic aorta and the ductus arteriosus (fig 3). In retrospect a branch pulmonary artery could be seen arising from the anterior vessel, identifying it as the pulmonary trunk. Though in this case the errors in diagnosis did not influence the management appreciably, some of the errors might be important if the heart disease were an isolated abnormality.

In case 10, our failure to identify the inferior vena cava led us to suspect that there was an interrupted inferior vena cava with ayzygous continuation, but this was not so. As in case 9, a hypoplastic left atrium was not recognised, and a dilated right atrium was misinterpreted as a common atrium. Visualisation of the atrioventricular valve and ventricular morphology was not good enough to identify the ventricular loop, and a posterior muscular ventricular septal defect was mistaken for an atrioventricular canal defect. In two additional fetuses (cases 1 and 2), tricuspid regurgitation seemed to restrict the excursion of the pulmonary valve resulting in an overestimation of the degree of obstruction. 30
Echocardiographic diagnosis of fetal heart defects in mid trimester

In summary, diagnostic errors were made in the evaluation of each cardiac segment. Systemic and pulmonary venous anomalies, were particularly difficult to visualise in fetuses of less than 24 weeks’ gestation, though improved resolution and new techniques (such as colour flow Doppler) may improve the sensitivity. On two occasions a small atrial chamber was not recognised and this led to a false diagnostic impression of a single atrium. In one case the presence of mitral atresia led to the misdiagnosis of a single common atrioventricular valve, and on two occasions imaging was not good enough to see ventricular looping. Evaluation of the infundibular and semilunar valve segments of the heart was largely successful, though in two cases the presence of severe tricuspid regurgitation influenced the assessment of the pulmonary valve.

Our experience suggests that some additional defects are unlikely to be diagnosed consistently by prenatal echocardiography, at least before 24 weeks’ gestation. We missed muscular ventricular septal defects and coarctation of the aorta largely because of limitations in resolution of the imaging devices. None of these defects could be definitely diagnosed, even in retrospect. Other defects that might not be detected for the same reason include abnormalities of the valves such as bicommissural aortic valve or congenital mitral stenosis. Normal fetal physiology results in a widely patent foramen ovale, precluding reliable prenatal diagnosis of atrial septal defect secundum (fig 4). Prenatal echocardiography cannot predict postnatal patency of the ductus arteriosus, and in some cases coarctation of the aorta may develop postnatally in association with closure of the ductus arteriosus.31

Because a fetus with a normal two dimensional echocardiogram was not re-examined again, we cannot exclude the possibility that some defects missed at the first examination might be detected
The high yield of cardiac defects in our series is the result of the highly selected nature of our patient population. The disproportionate number of fetuses with unusual and severe anomalies was largely because of referral after routine obstetric ultrasound examination had suggested the presence of a heart defect. Similar skewing of the distribution towards more severe lesions was noted in the series reported by Allen et al.32

Though prenatal echocardiography is a promising and useful technique, its limitations should be recognised. Reliable diagnosis of structural heart defects, especially complex lesions, in utero requires extensive knowledge of normal and pathological cardiac anatomy. Despite meticulous use of a segmental approach to prenatal echocardiographic diagnosis of structural heart defects we have been unable to achieve the diagnostic accuracy attainable postnataally. We hope that as techniques improve prenatal diagnosis will become as accurate as postnatal diagnosis.

This study was supported in part by training grant No 5T32HLO 752-03 from the National Institutes of Health.

References

6 Wladimiroff JW, Stewart PA, Vosters RPL. Fetal cardiac structure and function as studied by ultrasound. Clin Cardiol 1984;7:239–53.
13 Allan LD, Crawford DC, Anderson RH, Tynan MJ. Echocar-
Echocardiographic diagnosis of fetal heart defects in mid trimester


Correspondence and requests for reprints to Dr Ira A Parness, Department of Cardiology, The Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.

Accepted 26 May 1988
Echocardiographic diagnosis of fetal heart defects in mid trimester.

I A Parness, S B Yeager, S P Sanders, B Benacerraf, S D Colan and R VanPraagh

Arch Dis Child 1988 63: 1137-1145
doi: 10.1136/adc.63.10_Spec_No.1137

Updated information and services can be found at:
http://adc.bmj.com/content/63/10_Spec_No/1137

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/