malignant hyperthermia, may offer an effective treatment. 5 6

References

Neuroleptic malignant syndrome 795

Oral administration of active vitamin D metabolites to low birthweight infants

I Z KOVAR, P D MAYNE, J J JAMES, AND I C BARNES

Departments of Child Health and Chemical Pathology, Charing Cross and Westminster Medical School, London

SUMMARY The active vitamin D metabolites 1α,25-dihydroxycholecalciferol (Rocaltrol) and the analogue 1α-hydroxycholecalciferol (One-Alpha) are adequately absorbed after oral administration in the preterm infant. The absorption pattern is similar to that seen in adults.

Bone demineralisation is common in low birthweight preterm infants, with a reported incidence of up to 32%. Vitamin D metabolites are prescribed in the management and prophylaxis of early onset hypocalcaemia and rickets.1 2 There is little information available on the absorption and acute metabolic effect after oral administration of these metabolites to preterm infants. We report on 10 low birthweight preterm infants who received an equivalent oral dose of 1α,25-dihydroxycholecalciferol (Rocaltrol, Roche Products, Herts, United Kingdom) or 1α-hydroxycholecalciferol (One-Alpha, Leo Laboratories, Bucks, UK).

Patients and methods

Two groups of five infants (two boys and three girls each) were studied. Group 1, who had a median gestational age of 28 weeks (range 27–29 weeks) and birth weight of 1210 g (range 840–1360 g), received 0.1 µg/kg of One-Alpha at a median postnatal age of 4 weeks (range 3–5). Group 2, who had a median gestational age of 28 weeks (range 27–30 weeks) and birth weight of 1110 g (range 870–1200 g), received 0-1 µg/kg of Rocaltrol at a median postnatal age of 4 weeks (range 3–5 weeks).

Both agents were prepared according to the manufacturer’s protocol and given as a single morning oral dose. At the time of investigation the feeding regimens in both groups were identical; two infants in both were receiving expressed breast milk, two mixed feed, expressed breast milk, and standard formula feed, and one standard formula feed alone. No infant had clinical, biochemical, or radiological evidence of bone demineralisation or of hypocalcaemia.

Blood (1·5 ml) was collected by venipuncture immediately predose and at six and 24 hours postdose. It was not considered ethically correct to take additional samples at other times. The first postdose sample time of six hours was chosen to approximate to the peak absorbed concentration time as based on available data from adults.3

Blood was separated within half an hour of collection and the plasma aliquoted and stored frozen at −20°C till assayed. Plasma 25-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol concentrations were assayed in duplicate by competitive protein binding after sephadex column separation by the method of Mallon et al.4 Individual patient samples were analysed within the same assay batch. The interassay coefficient of variation for 25-hydroxycholecalciferol was 11% while for 1α,25-dihydroxycholecalciferol it was 12%. Plasma calcium concentration was assayed by a manual

Correspondence to Dr H Monaghan, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland.

Received 24 March 1986
Figure Serial changes in plasma 1α,25-dihydroxycholecalciferol concentrations after oral administration of 1α-hydroxycholecalciferol (group 1) and 1α,25-dihydroxycholecalciferol (group 2). Feeding regimens at the time of study are as follows: ● — expressed breast milk; ▲ ▲ ▲ = mixed feed, expressed breast milk, and standard formula feed; ○ ○ ○ = standard formula feed.

cresolphthalene compleximetric method with an intra-assay coefficient of variation of 2% and plasma inorganic phosphate concentration by a manual molybdate reduction method with an intra-assay coefficient of variation of 4%. Statistical analysis of all biochemical variables was performed using the Mann–Witney U test. The study was approved by the hospital ethical committee, and informed consent was obtained.

Results

The median and range of the predose plasma 1α,25-dihydroxycholecalciferol concentration and the median incremental increase above this basal concentration at six and 24 hours are shown in the Table. There was no significant difference between the predose concentrations of the two groups. In group 1 there was a sequential increase in plasma 1α,25-dihydroxycholecalciferol concentrations over the 24 hours, but this increase was not significant. In group 2, however, there was a significant increase at six hours (p<0.01), which returned towards the predose concentration at 24 hours (Figure).

Two infants in group 1 showed a net negative change in 25-hydroxycholecalciferol, whereas three infants in group 2 showed a similar change. At 24 hours all infants in group 1 and two in group 2 showed a net positive change. The changes were not significant, however, at either time.

There was no significant change in plasma calcium or inorganic phosphate concentration in either group at six or 24 hours.

Discussion

With the availability of more potent vitamin D metabolites or analogues, these agents have been increasingly prescribed both in the adult and in the infant for metabolic conditions associated with altered vitamin D metabolism. They have a number of therapeutic advantages over the parent com-

<table>
<thead>
<tr>
<th>Plasma 1α,25-hydroxycholecalciferol (pmol/l)</th>
<th>Predose concentrations</th>
<th>Incremental increase over predose concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Group 1 (One-Alpha)</td>
<td>48 (6.5–108)</td>
<td>58 (16–118)</td>
</tr>
<tr>
<td>Group 2 (Rocaltrol)</td>
<td>60 (22–118)</td>
<td>134 (79–421)</td>
</tr>
</tbody>
</table>
Oral administration of active vitamin D metabolites to low birthweight infants

Public Health Laboratory, Dulwich Hospital, and Departments of Genito-Urinary Medicine and Child Health, King's College Hospital, London

Chlamydia trachomatis was isolated in a further 29-5% of cases as against 3% in the 1982 British study2 and none in the 1977 study.1

Because C. trachomatis has been increasingly identified in the Camberwell Health Authority as a cause of pelvic inflammatory disease and non-specific and non-gonococcal genital infection5 we have studied the pattern and causes of neonatal conjunctivitis in our area. Parents of neonates with chlamydial or gonococcal conjunctivitis were investigated for genital infection.

Patients and methods

From August 1984 to January 1985 consecutive neonates with purulent conjunctivitis were recruited from the postnatal wards of King’s College and Dulwich Hospitals, the neonatal intensive care unit,
Oral administration of active vitamin D metabolites to low birthweight infants.
I Z Kovar, P D Mayne, J J James and I C Barnes

Arch Dis Child 1986 61: 795-797
doi: 10.1136/adc.61.8.795

Updated information and services can be found at:
http://adc.bmj.com/content/61/8/795

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/