transdermal loss of water and in our cases absorption of urea.
We hope that our cases and those of Dr Garty will remind our colleagues that skin is not an impervious barrier.

References

Vitamin D metabolites in idiopathic infantile hypercalcaemia
Sir,
We have further investigated two of the infants with idiopathic infantile hypercalcaemia described by Martin et al" and confirmed the presence of appropriate suppression of 1α hydroxylase activity in the presence of hypercalcaemia, suggesting intact feedback mechanisms.
As vitamin D supplements (400 IU/day) were withdrawn and a low calcium diet begun in case 1 the serum calcium concentration fell. Concentrations of 25-dihydroxycholecalciferol (1,25(OH)2D) rose and 25-hydroxycholecalciferol (25-OHD) fell due to the withdrawal of supplements (Table 1).
Calcium load tests, modified from the protocol of Barr and Forfar,2 showed an abnormal response when performed at 7, 13, 18, and 24 months in case 1 and at 22 months in case 2. Furthermore, 1,25(OH)2D concentrations performed during the most recent load tests showed appropriate suppression in the presence of hypercalcaemia (Table 2), suggesting intact homeostatic mechanisms.
Our assay is able to distinguish between 1,25(OH)2D2 and 1,25(OH)2D3 and it would seem that 1,25(OH)2D3 is more tightly controlled than 1,25(OH)2D2. The significance of this observation is unknown as these metabolites have not previously been measured in children with this condition. Further studies will be necessary to confirm our findings.
Dr Martin suggested that the low concentrations of 1,25(OH)2D seen in the patients with hypercalcaemia could be due either to appropriate suppression of 1α hydroxylase activity or to a reduced growth velocity. The results of the loading studies and the fact that the growth velocity of our first child did not alter with correction of the hypercalcaemia suggests that the former is a more likely explanation. Whether there is poor control of production of 1,25(OH)2D and whether this is important in the aetiology of the hypercalcaemia is an area for future study.

Table 1 Reaction of serum calcium and vitamin D concentrations to withdrawal of vitamin D supplements in case 1

<table>
<thead>
<tr>
<th>Calcium (mmol/l)</th>
<th>25-OHD (ng/ml)</th>
<th>1,25(OH)2D (pg/ml)</th>
<th>1,25(OH)2D3 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At diagnosis</td>
<td>48-6</td>
<td>31-0</td>
<td>3-16</td>
</tr>
<tr>
<td>2 weeks</td>
<td>53-5</td>
<td>36-0</td>
<td>2-38</td>
</tr>
<tr>
<td>4 weeks</td>
<td>40-6</td>
<td>47-0</td>
<td>2-47</td>
</tr>
<tr>
<td>7 months</td>
<td>30-7</td>
<td>60-0</td>
<td>2-44</td>
</tr>
</tbody>
</table>

25-OHD=25-hydroxycholecalciferol; 1,25(OH)2D=1,25-dihydroxycholecalciferol.

Table 2 Vitamin D metabolites during calcium loading in the two cases

<table>
<thead>
<tr>
<th>Calcium (mmol/l)</th>
<th>Fasting</th>
<th>0/5</th>
<th>1</th>
<th>1-5</th>
<th>2</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium (mmol/l)</td>
<td>2.44</td>
<td>2.77</td>
<td>—</td>
<td>2.96</td>
<td>—</td>
<td>2.79</td>
<td>—</td>
</tr>
<tr>
<td>1,25(OH)2D (pg/ml)</td>
<td>0</td>
<td>7</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>1,25(OH)2D3 (pg/ml)</td>
<td>63</td>
<td>55</td>
<td>—</td>
<td>53</td>
<td>—</td>
<td>53</td>
<td>—</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium (mmol/l)</td>
<td>2.53</td>
<td>—</td>
<td>3.37</td>
<td>—</td>
<td>3.23</td>
<td>3.15</td>
<td>2.79</td>
</tr>
<tr>
<td>1,25(OH)2D (pg/ml)</td>
<td>21</td>
<td>—</td>
<td>21</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>1,25(OH)2D3 (pg/ml)</td>
<td>60</td>
<td>—</td>
<td>57</td>
<td>—</td>
<td>56</td>
<td>47</td>
<td>34</td>
</tr>
</tbody>
</table>

1,25(OH)2D3=1,25-dihydroxycholecalciferol.

I thank Dr Barbara Mawer, Manchester University, for performing the assays.

References

M E McGraw
Southmead General Hospital,
Bristol BS10 5NB
Vitamin D metabolites in idiopathic infantile hypercalcaemia.

M E McGraw

Arch Dis Child 1986 61: 1246
doi: 10.1136/adc.61.12.1246

Updated information and services can be found at:
http://adc.bmj.com/content/61/12/1246.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/