Estimation of arterial oxygen and carbon dioxide tensions by a single transcutaneous sensor

M D WHITEHEAD, B V W LEE, T M PAGDIN, AND E O R REYNOLDS

Department of Paediatrics, University College London School of Medicine and Orange Medical Instruments Ltd, High Wycombe

SUMMARY A transcutaneous electrochemical sensor designed to estimate arterial oxygen (Pao2) and carbon dioxide (Paco2) tensions simultaneously and continuously was evaluated in newborn infants with respiratory illnesses. After calibration with two dry gas mixtures the sensor gave estimates of Pao2 and Paco2 that were comparable with those obtained by two separate electrodes that are already established in clinical use.

Estimation of arterial oxygen (Pao2) and carbon dioxide (Paco2) tensions by transcutaneous (tcPo2 and tcPCO2) electrodes is a valuable technique for the management of sick newborn infants. The use of two separate electrodes, however, is time consuming, may require two sets of apparatus, and can be difficult in a very small infant with a limited amount of available skin.

We have previously shown that tcPo2 and tcPCO2 could be measured simultaneously by a prototype combined electrochemical sensor, but the scatter of results, when compared with arterial blood samples, was quite large, and in vivo calibration was required for clinical use. This sensor has now undergone further development. We report here an evaluation of its accuracy after in vitro calibration.

Methods

Infants studied. Thirty studies were performed on 19 infants (six girls and 13 boys) with respiratory illnesses. The infants were born at 25 to 35 (mean 29) weeks of gestation weighing 849 to 2560 g (mean 1348 g). They were 6 to 139 (median 41) hours old at the start of the studies. Mechanical ventilation was in use during 26 studies and continuous positive airways pressure during one. For arterial blood sampling, an umbilical artery catheter was used in 25 studies, a cannula in the left radial artery in three, and on one occasion each, a cannula in the right radial artery or the left posterior tibial artery. Arterial blood pressure was always within the normal range and mean rectal temperature was 36-9°C (range 36-6 to 37-5°C).

The sensor. The combined sensor was constructed as described by Parker et al with minor modifications. The electrolyte was 80% ethylene glycol and 20% water containing 0-1 mol/l KHCO3 and 0-1 mol/l NaCl. The membrane was made of 25 μm-thick Teflon. The time constant (63% response time) of the sensor in vitro after a step change in ambient Po2 was 8 seconds and for Pco2, 18 seconds. Mean drift of the tcPo2 channel during 24 hours at a constant Po2 of 12 kPa and of the tcPCO2 channel at a Pco2 of 5 kPa were both less than 0-02 kPa/hour.

Procedure. The sensor was heated to 44-0°C and calibrated in vitro with two certified dry gas mixtures, one containing 12% O2 and 5% CO2, and the other 0% O2 and 10% CO2. An appropriate allowance for barometric pressure was made. The sensor was then attached to the infant’s skin with an adhesive ring. Abdominal skin was chosen when arterial sampling was from the umbilical or posterior tibial arteries, and the skin of the upper chest on the same side as the cannula when a radial artery was used. The outputs of the tcPo2 and tcPCO2 channels were displayed on a multichannel recorder (Fig. 1). For comparison, tcPo2 and tcPCO2 were also recorded from skin adjacent to the combined sensor by two separate skin electrodes, a Dräger tcPo2 electrode (Drägerwerk, West Germany) and a Roche tcPCO2 electrode (Hoffman-La Roche, Switzerland), both of which have previously been shown to give satisfactory estimates of Pao2 and Paco2 in infants. Recordings were continued for between 4-0 and 4-5 hours (mean 4-15 hours). To determine the relation between transcutaneous and
Estimation of arterial oxygen and carbon dioxide tensions by a single transcutaneous sensor

The records should be read from right to left. Two blood samples were taken for measurement of PaO₂ and PacO₂ as indicated by the arrows at either end of the records. These arrows also show the intervals between the chart-recorder pens. The infant weighed 1574 g at 32 weeks of gestation. He was 122 hours old at the time of the study and was being treated by intermittent mandatory ventilation with 30% oxygen for hyaline membrane disease.

arterial Po₂ and Pco₂, three samples of arterial blood were taken during each study, when the records were stable, at a mean of 0·8 (range 0·4 to 1·6), 2·4 (1·8 to 3·3), and 3·8 (3·3 to 4·4) hours after the start of the studies. Measurements of PaO₂ were made with an Instrumentation Laboratories 1303 blood gas analyser, the accuracy of which was confirmed with tonometered blood. After removal of the transcutaneous electrodes, the state of the skin was documented daily until the residual red marks had disappeared.

Results

Figure 2 shows the relation between tcPo₂ and PaO₂, and tcPco₂ and PacO₂. Data for the combined sensor are given in Figs. 2(a) and (b), and for the separate electrodes in Figs. 2(c) and (d). The regression equations for transcutaneous on arterial values, calculated by the method of least squares, are given in the legend. Figure 3 shows tcPo₂/PaO₂ and tcPco₂/PacO₂ during the studies, derived from the data points closest to each half hour interval.

The red marks present on removal of the combined transcutaneous sensor were similar in appearance to those left by the separate electrodes: they disappeared within 1 to 5 (mean 3) days.

Comment

Figures 2 and 3 show that after in vitro calibration, tcPo₂ and tcPco₂ recorded by the combined sensor gave estimates of PaO₂ and PacO₂ that were almost as accurate as those provided by the separate electrodes. No deterioration in accuracy occurred during the four hours for which the studies were continued (Fig. 3). The overestimate of PacO₂ by tcPco₂ (Figs. 2(b), 2(d), and 3) was as expected on theoretical grounds.² For clinical use, correction for this overestimate is required. Severinghaus has argued that in order to derive the most suitable correction factors, an intercept of 0·5 kPa on the tcPco₂ axis can be assumed.³ Applying this approach to our data reduced the slope of tcPco₂ on PacO₂ for the combined sensor from 1·65 to 1·33, and for the Roche electrode from 1·62 to 1·32 (Fig.

Fig. 1 Transcutaneous Po₂ and tcPco₂ recorded continuously by the combined sensor and the separate Dräger tcPo₂ and Roche tcPco₂ electrodes.

The records should be read from right to left. Two blood samples were taken for measurement of PaO₂ and PacO₂ as indicated by the arrows at either end of the records. These arrows also show the intervals between the chart-recorder pens. The infant weighed 1574 g at 32 weeks of gestation. He was 122 hours old at the time of the study and was being treated by intermittent mandatory ventilation with 30% oxygen for hyaline membrane disease.

arterial Po₂ and Pco₂, three samples of arterial blood were taken during each study, when the records were stable, at a mean of 0·8 (range 0·4 to 1·6), 2·4 (1·8 to 3·3), and 3·8 (3·3 to 4·4) hours after the start of the studies. Measurements of PaO₂ were made with an Instrumentation Laboratories 1303 blood gas analyser, the accuracy of which was confirmed with tonometered blood. After removal of the transcutaneous electrodes, the state of the skin was documented daily until the residual red marks had disappeared.

Results

Figure 2 shows the relation between tcPo₂ and PaO₂, and tcPco₂ and PacO₂. Data for the combined sensor are given in Figs. 2(a) and (b), and for the separate electrodes in Figs. 2(c) and (d). The regression equations for transcutaneous on arterial values, calculated by the method of least squares, are given in the legend. Figure 3 shows tcPo₂/PaO₂ and tcPco₂/PacO₂ during the studies, derived from the data points closest to each half hour interval.

The red marks present on removal of the combined transcutaneous sensor were similar in appearance to those left by the separate electrodes: they disappeared within 1 to 5 (mean 3) days.

Comment

Figures 2 and 3 show that after in vitro calibration, tcPo₂ and tcPco₂ recorded by the combined sensor gave estimates of PaO₂ and PacO₂ that were almost as accurate as those provided by the separate electrodes. No deterioration in accuracy occurred during the four hours for which the studies were continued (Fig. 3). The overestimate of PacO₂ by tcPco₂ (Figs. 2(b), 2(d), and 3) was as expected on theoretical grounds.² For clinical use, correction for this overestimate is required. Severinghaus has argued that in order to derive the most suitable correction factors, an intercept of 0·5 kPa on the tcPco₂ axis can be assumed.³ Applying this approach to our data reduced the slope of tcPco₂ on PacO₂ for the combined sensor from 1·65 to 1·33, and for the Roche electrode from 1·62 to 1·32 (Fig.
Fig. 2 Relation between transcutaneous and arterial P_{O_2} and P_{CO_2}.

For the combined sensor (a) and (b), $tcP_{O_2} = 0.80 P_{O_2} + 1.89 kPa$ (SE of line = 1.10 kPa, $r = 0.87$); $tcP_{CO_2} = 1.65 P_{CO_2} - 1.63 kPa$ (SE = 1.34, $r = 0.90$). For the Dräger tcP_{O_2} electrode (c), $tcP_{O_2} = 0.80 P_{O_2} + 2.41 kPa$ (SE = 0.80, $r = 0.93$) and for the Roche tcP_{CO_2} electrode (d), $tcP_{CO_2} = 1.62 P_{CO_2} - 1.50 kPa$ (SE = 0.71, $r = 0.96$). The interrupted lines show the regressions calculated assuming a tcP_{CO_2} intercept of 0.5 kPa (see text). For all regressions, $P<0.001$.

2(b) and (d). These values are very similar to those quoted for tcP_{CO_2} electrodes in general by Hazinski and Severinghaus.6 The data obtained in this study do not, however, show any advantage of assuming an intercept. Until more information is available, we think that estimation of P_{CO_2} by the tcP_{CO_2} channel of the combined sensor will best be done by incorporating the indices of the regression equation into the calibration procedure without making an assumption about the position of the intercept.

Provided due care is taken with the interpretation of the results (as for any transcutaneous electrode) we suggest that the combined sensor is a suitable instrument for estimating P_{O_2} and P_{CO_2} continuously in infants.

Fig. 3 Transcutaneous P_{O_2}/Pao₂ (a) and tcP_{CO_2}/Paco₂ (b).

Data points closest to each half-hour interval are shown ($±$ SE, $n = 4-15$, mean = 10). Closed circles = combined sensor, open circles = Dräger electrode (a), and Roche electrode (b).
We thank D T Delpy, Dr D Parker, Dr D N Halsall, and the staff of the Neonatal Unit. This study was supported by the M R C.

References

Correspondence to Miss M D Whitehead, Department of Paediatrics, University College London School of Medicine, Rayne Institute, 5 University Street, London WC1E 6JJ.

Received 6 November 1984
Estimation of arterial oxygen and carbon dioxide tensions by a single transcutaneous sensor.
M D Whitehead, B V Lee, T M Pagdin and E O Reynolds

Arch Dis Child 1985 60: 356-359
doi: 10.1136/adc.60.4.356

Updated information and services can be found at:
http://adc.bmj.com/content/60/4/356

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/