Developmental sequence of periventricular leukomalacia

Correlation of ultrasound, clinical, and nuclear magnetic resonance functions

L M S DUBOWITZ, G M BYDDER, AND J MUSHIN

Departments of Paediatrics and Neonatal Medicine and Diagnostic Radiology, Royal Postgraduate Medical School, Hammersmith Hospital, London

SUMMARY The evolution of severe periventricular leukomalacia was followed by ultrasonography in three newborn infants, and the subsequent myelination of the brain was assessed by nuclear magnetic resonance imaging. Four stages of periventricular leukomalacia could be identified by ultrasonography; (1) initial congestion, followed by (2) relative normalisation, (3) development of cysts, and (4) resolution of cysts but development of ventricular enlargement. All infants exhibited abnormal neurological signs from 36 weeks conceptual age and had unequivocal signs of cerebral palsy by 6 to 9 months of age. One infant became cortically blind but the other two seemed to have normal vision. Nuclear magnetic resonance imaging showed some abnormality of the ventricular system and delayed myelination in all three infants. The delay was most noticeable in the opticothalamic region, which was also the site of the most extensive lesions observed on ultrasonography. Progress in myelination was observed in the infants where a repeat scan was performed.

Periventricular leukomalacia in the brain of the newborn infant has been recognised by pathologists since the last century.1-3 Its ischaemic nature and evolution, however, were first documented only comparatively recently by Banker and Larroche.4 It is an infarction of the white matter which leads to demyelination.5 It has been suggested that lesions in the area of the centrum semiovale form the anatomical basis of cerebral diplegia, while the lesions in the optic and auditory radiation will lead to sensory impairment.5 6

Recent advances in imaging techniques have provided the opportunity to test this hypothesis. Periventricular leukomalacia has been detected in the neonatal period by cranial ultrasonography.7 8 Recently Bowerman et al9 reported the evolution of the ultrasound findings in some of the survivors. Further confirmation was obtained by correlative necropsy studies by Nwaesei et al10 who showed that echodensities of this nature seen in the parenchyma on ultrasonography represent haemorrhagic or non-haemorrhagic periventricular infarction.

Nuclear magnetic resonance imaging can show the process of myelination in infancy11 and it should thus be possible to study the effect of periventricular leukomalacia on myelination during life and correlate this with clinical outcome.

We have been able to study prospectively, over an 18 month period, three infants in whom the diagnosis of periventricular leukomalacia was made in the neonatal period by ultrasonography. The evolution of the ultrasound appearances, the clinical course, and associated findings on nuclear magnetic resonance imaging form the basis of this report.

Patients and methods

The three infants were born at 31, 30, and 31 weeks' gestation, and weighed 1420, 1340, and 1760 g respectively (cases 1, 2 and 3). The pregnancy was complicated by antepartum haemorrhage in case 1. All three were delivered by emergency caesarean section because of fetal distress in case 1, breech presentation in a triplet pregnancy in case 2, and transverse lie in case 3. All had Apgar scores of 5 or less at one minute, were briefly intubated, and had Apgar scores above 7 by 10 minutes. They were all reintubated for hyaline membrane disease within the first few hours of life. All three also developed pneumothoraces, had acidosis (with at least one pH
Dobowitz, Bydder, and Mushin

value below 7.2), and had a period of low pulse pressure, though the lowest systolic blood pressure recorded in any of them was 42 mmHg. None had any evidence of sepsis.

All three infants had daily ultrasound examinations and neurological assessments during the first week of life, then twice weekly until hospital discharge and again at 42, 41, and 42 weeks conceptual age respectively.

Ultrasound scanning was performed through the anterior fontanelle using an ATL Mark III sector scanner with 5 and 7 MHz transducers. Images were obtained in coronal, semiaxial, and parasagittal planes. Increased echogenicity was considered present when it was similar in density to that of the choroid plexus and was visible in the coronal or axial as well as the parasagittal planes. Cysts were identified as areas of low echogenicity of at least 2 mm in diameter.

Neurological assessment in the neonatal period included a detailed neurological examination, measurement of visual acuity by preferential looking technique,13 visually evoked responses, and auditory brainstem responses. The infants were re-evaluated at 6, 9, 12, 15, and 18 months of age using a standardized neurological proforma adapted from the Ounsted (personal communication, 1978) and Touwen15 examinations and by the Griffiths mental development scale.

Nuclear magnetic resonance imaging was performed in case 1 at 9 months, in case 2 at 11½ months and 15 months, and in case 3 at 15 months chronological age. The technique of nuclear magnetic resonance scanning and the normal appearances in infants have previously been described.9 Inversion recovery (T1 dependent) images were obtained at low ventricular level. Ventricular size and the degree of apparent myelination were compared with age matched controls.

Results

Ultrasound findings. Periventricular densities were not noted until day 3 in cases 1 and 2 but were

Fig. 1 Case 1, gestational age 31 weeks. Ultrasound appearance showing cyst at 11 weeks of age in coronal view (a) and parasagittal view (b), and ventricular dilatation at 6½ months of age (c).
already present on the first scan at 12 hours of age in case 3. In coronal section the echodensities seemed maximal lateral to and above the lateral ventricle, while in the parasagittal plane they were most noticeable above and posterior to the lateral ventricle.

In case 1 they were still present two days later, but after this the scan seemed normal and remained so until the infant's discharge to the referring hospital at 34 weeks conceptual age. The infant was re-admitted two weeks later because of 'collapse' and convulsions. Periventricular densities were noted the following day, but were only seen for 24 hours. The infant was referred back again to the referring hospital at 38 weeks conceptual age and was seen again four weeks later. At that time (42 weeks conceptual age) multiple cystic lesions were detected by ultrasonography throughout the cerebral parenchyma (Fig. 1a). The appearances remained unchanged for the next four weeks, but when the infant was scanned at 6 months chronological age (57 weeks conceptual age) they were no longer visible. At this stage ventricular enlargement was noted. These appearances persisted throughout all the subsequent scans until 9 months of age after which the fontanelle closed and further scans were not possible (Fig. 1).

In case 2 the echodensities persisted for four days, after which the scan seemed normal until 33 days of age. At that time multiple cystic areas were noted adjacent to the occipital horns. These abnormalities were more prominent on the left side. There was no evidence that the cysts were communicating with the ventricles. The infant was discharged to the referring hospital the following day. When seen again at 42 weeks conceptual age the cysts were no longer visible, but asymmetrical ventricular dilatation was seen, which was more noticeable on the left. This persisted through all the subsequent scans (Fig. 2).

In case 3 the periventricular densities persisted for over two weeks, after which they became less noticeable. The wall of the posterior horn became irregular and some areas of low echogenicity could be seen around it, but in spite of repeated scanning.
with a 7 mHz transducer, no definite cysts could be
identified at any time. The infant was discharged
from hospital at 38 weeks, and was seen again at 42
weeks conceptual age. No cysts were visible and the
ventricles were considered to be within normal
limits. At 6 months chronological age a moderate
degree of irregular ventricular enlargement was
noted, but by 9 months of age the ventricles had
decreased in size (Fig. 3). None of the infants had
any evidence of periventricular haemorrhage at any
time.

Neurological assessment. All three infants showed
very noticeable hypotonia and poor visual alertness
when assessed at 34, 35, and 36 weeks conceptual
age respectively. At 41 to 42 weeks conceptual age
an abnormal tone pattern was still present in all
three infants, consisting of increase in arm flexor
tone, adducted thumbs, and increased extensor tone
in the legs. Trunk and head control were generally
poor, though some relative increase in neck extensor
tone was noted. At this stage all three showed an
ability to track a bright red woollen ball, but visual
attention was still poor. In cases 1 and 2 visual acuity
was abnormal (160° arc) but was normal (80° arc) in
case 3. Visual evoked responses were obtained in
the neonatal period in cases 2 and 3. In case 2 they
were absent at 35 weeks, and present but immature
at 42 weeks conceptual age. In case 3 they were
normal at 38 weeks conceptual age. Auditory brain-
stem responses were normal in all three infants.

At age 6 months all three infants showed un-
equivocal signs of cerebral palsy. Case 1 was
quadriplegic, the other two diplegic, but with more
noticeable signs on the right side in case 2 and on the
left side in case 3. From 9 months onwards all three
infants were considered quadriplegic. Case 1 had
equally severe involvement in the arms and legs,
cases 2 and 3 showed more leg than arm involve-
ment and both still had asymmetry. The Griffiths
quotients uncorrected/corrected (for prematurity) in
the three infants done at various ages were as
follows:

Case 1—less than 40 both uncorrected and
corrected at 9, 12, and 18 months.
Case 2—47/72 at 9 months, 54/65 at 12 months,
50/56 at 15 months, 48/54 at 18 months.
Case 3—59/83 at 9 months, 61/73 at 12 months,
47/56 at 15 months, 50/56 at 18 months.
Case 1 was considered blind at one year and had
absent visually evoked responses. The other two
infants had an intermittent squint, but visual func-
tion seemed normal on clinical assessment and no
abnormality was found on ophthalmological
examination at 1 year of age.

Nuclear magnetic resonance imaging. Case 1, at 8
months of age, showed symmetrical enlargement of
both ventricles mainly involving the posterior horn.
Compared with infants of the same postmenstrual
age, the scan had a grossly abnormal appearance.
No myelin was recognisable (Fig. 4).

Case 2, at 11½ months of age and compared with
the normal triplet, also showed considerable
enlargement of the ventricular system, mainly
involving the posterior horn which was more
marked on the left side. The scan at 15 months
showed the ventricular system unchanged. Myelina-
tion had progressed, but was still considerably
delayed compared with the normal triplet. The
relative delay posteriorly was now even more
striking (Fig. 5).

In case 3 the scan performed at 15 months showed
only mild dilatation of the posterior horn. Compared
with the age matched control myelination was
delayed. Again this was much more noticeable
posteriorly. No asymmetry could be detected
(Fig. 6).

Fig. 3 Case 3, gestational age 31 weeks. Ultrasound scan
showing periventricular densities on day 1. Semiaxial scan
(a); parasagittal scan (b).
Developmental sequence of periventricular leukomalacia

Fig. 4 Nuclear magnetic resonance inversion recovery scan of a 6 month normal control (a) and case 1 (b) at 8 months chronological age (6 months corrected for prematurity).

Note presence of myelination in thalamus, internal capsule and thalamic radiation in normal control and dilated posterior horns but no visible myelination in case 1.

Fig. 5 Nuclear magnetic resonance inversion recovery scan of normal triplet (a) and affected triplet, case 2 (b) at 11½ months.

Normal triplet has well developed myelin in forceps minor and major and opticothalamic radiation. Abnormal triplet has asymmetrical ventricular dilatation. Some myelin is present in the forceps minor but myelination is poor in internal capsule L>R and very poor in opticothalamic radiation.

Discussion

From our sequential ultrasound studies in these infants we were able to define four stages in the evolution of their leukomalacia: (1) congestion (increased echogenicity), often followed by (2) relative return to normal, (3) the development of cysts, and (4) resolution of cysts but presence of ventricular enlargement. This evolution is similar to that described by Bowerman et al. In our experience, however, as illustrated by case 3, it seems that cysts may not always be recognisable even by regular scanning. This could be explained by the inability of the ultrasound equipment to visualise cysts less than 2 mm in diameter. It is also possible that not all cases progress to cyst formation. The absence of cysts, however, does not imply the absence of permanent tissue destruction or future handicap as is shown in both the clinical outcome and nuclear magnetic resonance findings in this case. It is of interest that the clinical outcome in cases 2 and 3 was similar, though cyst formation and persistent ventricular dilatation were only present in case 2. Some degree of ventricular enlargement was noted in all three patients, though it was less pronounced and transient in the infant who did not seem to have any cysts. It is thus interesting to speculate whether most cases of late ventricular enlargement, particularly of the posterior horn, represent the end stages of leukomalacia. The various stages noted on the ultrasound scan also correspond fairly closely with the various stages of this condition described by
DeReuck et al16 in necropsy specimens of infants who survived the neonatal period.

Although hypotension and infection have been described as causative factors in animals,17 we could find no definite common predisposing cause in our patients. It is of interest that all the three patients described here and also six of seven reported by Bowerman9 were infants above 30 weeks' gestation while the condition was most prevalent in Shuman's necropsy cases in infants of youngest gestational age and lowest birthweight.6 The reason for this discrepancy is not quite clear but it is possible that most of the younger infants do not survive long enough for the condition to be recognised in its full form on ultrasonography.

Although it has been implied that no distinct neurological pattern can be distinguished in these infants, no previous detailed neurological assessment has been recorded, partly because in many infants the diagnosis was retrospective.9 We have found that all our infants showed a similar, though not necessarily pathognomonic pattern in the neonatal period (that is initial hypotonia at 36 weeks conceptual age which was replaced by hypertonia by 40 weeks with abnormal distribution of tone, associated with irritability, tremors, and poor alertness). This pattern is different from that observed after periventricular haemorrhage. It is also of interest that although one of the infants turned out to be cortically blind later, visual function was shown clinically during the first three months of life.

The nuclear magnetic resonance findings were of special interest. In two cases the delay in myelination was mainly in the opticothalamic radiation, yet at 18 months these infants manifested mainly a motor and not a visual disability. The abnormalities were also more noticeable in the infants with cysts. Further studies will be needed to establish whether the apparent delay in myelination relates more to disturbances of tissue structure or to abnormal function.

These three patients illustrate for the first time during life the probable natural history of severe leukomalacia in infants without periventricular haemorrhage who survive the neonatal period. Further correlative studies will be needed to establish what proportion of infants with similar lesions show later handicap and to what extent the initial appearances may predict later outcome.

Addendum

Since the submission of this article we have had two further cases with similar clinical outcome and nuclear magnetic resonance findings at 10 months and 18 months chronological age.

We thank Dr M I Levene for the initial ultrasound scans in case 1, Miss J M Pennock for help with NMR imaging, Mr A Mushin for ophthalmological opinion, Dr S Lary for the ABRs, Professor V Dubowitz, and Dr J Wigglesworth for criticism and advice, and Mrs C Wragg for secretarial help. The work was supported by the Medical Research Council.
References

14 Fantz RL, Fagan JF. Visual attention to size and number of pattern details by term and preterm infants during the first six months. Child Dev 1975;46:3-18.

Correspondence to Dr L M S Dubowitz, Department of Paediatrics and Neonatal Medicine, Hammersmith Hospital, London W12 0HS.

Received 26 November 1985
Developmental sequence of periventricular leukomalacia. Correlation of ultrasound, clinical, and nuclear magnetic resonance functions.

L M Dubowitz, G M Bydder and J Mushin

Arch Dis Child 1985 60: 349-355
doi: 10.1136/adc.60.4.349

Updated information and services can be found at:
http://adc.bmj.com/content/60/4/349

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/