Reference ranges for plasma creatinine during the first month of life

P T RUDD, E A HUGHES, M M PLACZEK, AND D T HODES
Department of Paediatrics and Neonatal Medicine, Institute of Child Health, Hammersmith Hospital, London; Department of Paediatrics, Hillingdon Hospital, Uxbridge, Middlesex

SUMMARY A reference range of plasma creatinine levels for the first month of life derived from 238 babies of 25–42 weeks’ gestation is presented. Measurements were performed on a Beckman Creatinine Analyser 2, which uses the Jaffé rate reaction method. There was a decline in plasma creatinine level with increasing postnatal and gestational age. Infants undergoing mechanical ventilation at age 2 days had a significantly increased creatinine level.

With increasing resources being devoted to the care of the preterm infant there is a need for a reference range for plasma creatinine levels in the neonatal period so that renal failure can be identified and treated promptly. True creatinine is inversely proportional to the glomerular filtration rate corrected for body length. Previous studies have shown that there is a 2-fold rise in glomerular filtration rate in the first 14 days of life and that glomerular filtration rate is proportional to gestational age. Thus it is to be expected that there will be a wide variation in plasma creatinine levels in newborn infants. Stonestreet and Oh measured plasma creatinine concentrations in 57 low birthweight infants but obtained only 81 values. Feldman and Guignard measured plasma creatinine in 56 babies, the most immature of whom were of 30 weeks’ gestation. Many babies receiving intensive care are less mature than this.

Materials and methods

Subjects. Samples were taken from 238 babies during an 8-month period. Informed consent was obtained from the parents of these babies, the study having been approved by the hospital ethical committee.

Blood samples (100 μl) were obtained by heel-prick, venepuncture, or through an umbilical artery catheter at 2, 7, 14, 21, and 28 days after birth when blood was obtained for routine tests.

 Babies from the regional neonatal intensive care unit at Hammersmith Hospital were studied together with those from the subregional intensive care unit at Hillingdon Hospital, babies from the lying-in ward, and infants seen at baby clinics during the first month of life. The weights of the babies according to gestational age are shown in Table 1.

<table>
<thead>
<tr>
<th>Gestation (weeks)</th>
<th>Number of babies</th>
<th>Birthweight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>25–28</td>
<td>33</td>
<td>930</td>
</tr>
<tr>
<td>29–32</td>
<td>78</td>
<td>1435</td>
</tr>
<tr>
<td>33–36</td>
<td>54</td>
<td>2015</td>
</tr>
<tr>
<td>37–42</td>
<td>73</td>
<td>2900</td>
</tr>
</tbody>
</table>

Gestational age was calculated from the first day of the mother’s last menstrual period and a Dubowitz et al. gestational assessment was performed on all infants in the neonatal intensive care units. If this differed by more than 2 weeks, the most reasonable value was taken using other information—such as antenatal ultrasound findings.

The following were excluded from the study: babies with congenital heart disease, babies in cardiac failure from a patent ductus arteriosus, or those who had received indomethacin during the previous 48 hours, babies who had become oliguric as a result of birth asphyxia, and those with various renal anomalies or muscle disease.

Because the aim was to establish a reference range, certain factors which might influence the plasma creatinine values were considered at 2 and 7 days in each gestational age group as follows: pre-eclamptic toxaemia in the mother; birth asphyxia defined as an Apgar score of 4 or less at one minute or 6 or less at five minutes; severe acidosis with a recorded arterial pH of 7.1 or less in the first week of life; gentamicin administered at a dose of 2.5–3.0 mg/kg per day for babies under 1000 g and 5–6 mg/kg per day for babies over 1000 g; the volume of fluid given on the 2nd and 7th days of life; mechanical ventilation at 2 and 7 days. There were 74 infants of 32 weeks or less for whom creatinine values were available at 2 days. Of these, 32 received ventilation...
and 28 of these had idiopathic respiratory distress syndrome.

Biochemical method

The Beckman Creatinine Analyser measures the rate of production of the red complex formed when creatinine reacts with alkaline picrate. Plasma (30 μl) is needed for a single analysis, of which 25 μl is introduced into the machine, the reading being made at 25.6 seconds, reducing interference from early and late-reacting chromogens.

Bilirubin was not found to interfere with the creatinine analyses. The study was carried out on pooled baby sera and bilirubin was added to a level of 400 μmol/l. Because high levels of plasma pyruvate are present during the lactic acidosis which may occur in babies with severe respiratory distress syndrome, a pyruvate interference study was performed in which increasing amounts of pyruvate were added to plasma and the effects on creatinine measured. The addition of 0.1 mmol/l of pyruvate to a plasma sample produced a rise of 5 μmol/l in the creatinine value.

Using a control serum with plasma creatinine at 53 μmol/l the standard deviation (SD) of 11 measurements was ± 3.9 μmol/l, with a coefficient of variation (CV) of 6.4%; similarly at a concentration of 128 μmol/l the SD was ± 5.3 μmol/l with a CV of 4.4% on 22 measurements. The between-batch variation at a plasma creatinine level of 141 μmol/l on 42 analyses gave an SD of ± 3.9 μmol/l and a CV of 2.8%.

Results

There was a fall in plasma creatinine concentrations both with increasing postnatal and gestational age (Table 2 and Figure). The 2-day values of plasma creatinine are given in three columns in the table, because of the appreciable difference between plasma creatinine level in babies receiving mechanical ventilation and those breathing spontaneously. When the data were analysed using an unpaired t test only the infants of 29–32 weeks’ gestation receiving mechanical ventilation were found to have a significantly increased plasma creatinine level (P<0.01). Similarly, the severely acidotic infants in this gestational age group were found to have a raised creatinine level (P<0.01), but all these babies were also receiving mechanical ventilation.

Table 2 Plasma creatinine values in the first month of life

<table>
<thead>
<tr>
<th>Gestation (weeks)</th>
<th>Postnatal age (days)</th>
<th>All babies</th>
<th>Breathing spontaneously</th>
<th>Ventilated</th>
<th>All babies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>116±40</td>
<td>108±20</td>
<td>121±45</td>
<td>84±32</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(n=24)</td>
<td>(n=8)</td>
<td>(n=16)</td>
<td>(n=22)</td>
</tr>
<tr>
<td>29–32</td>
<td>2</td>
<td>104±38</td>
<td>100±32</td>
<td>115±43</td>
<td>83±41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(n=50)</td>
<td>(n=36)</td>
<td>(n=16)</td>
<td>(n=56)</td>
</tr>
<tr>
<td>33–36</td>
<td>2</td>
<td>93±39</td>
<td>94±39</td>
<td>87±46</td>
<td>68±44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(n=36)</td>
<td>(n=32)</td>
<td>(n=4)</td>
<td>(n=31)</td>
</tr>
<tr>
<td>37–42</td>
<td>2</td>
<td>75±38</td>
<td>75±38</td>
<td>—</td>
<td>50±36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(n=27)</td>
<td>(n=27)</td>
<td></td>
<td>(n=39)</td>
</tr>
</tbody>
</table>

Mean plasma creatinine μmol/l±2 SD.

Conversion SI to traditional units: 1 μmol/l ≈ 0.0113 mg/100 ml.
Factors which were thought might influence the plasma creatinine values were also analysed using multiple regression. This enabled us to look at the effect of mechanical ventilation and other factors in all babies at a particular postnatal age. The analysis is able to take into account the fall in creatinine level with increasing gestational age, which is necessary with a larger sample than that included in the unpaired t test. Using this method of analysis mechanical ventilation was associated with an increased plasma creatinine level at 2 days (P<0.05) but severe acidosis did not have a significant effect on the creatinine. Gentamicin administration had no significant effect on creatinine, nor did pre-eclamptic toxaemia, birth asphyxia, or fluid administration.

The following equation relating creatinine to gestational age and postnatal age was derived from the data, in which all babies except those ventilated at 2 days were included:

\[
\text{log}_e \text{ creatinine} = 6.400 - 0.3026 \times \text{log}_e \text{ age in days} - 0.4927 \times \text{gestation in weeks}
\]

From this equation a normal range has been derived (Appendix). While the values derived from the equation correspond closely to the value we obtained in babies 7–28 days of age, the 95% confidence limits for babies of 2 days are well outside the 2 SD values given in Table 2.

Discussion

We have shown a fall in plasma creatinine level with increasing gestational and postnatal age. These values are in accordance with the measurements made of glomerular filtration rate by Guignard et al. and Siegel and Oh on neonates. There was a significant increase in plasma creatinine level in babies undergoing mechanical ventilation for respiratory distress which corresponds to the finding of Guignard et al. of a reduced glomerular filtration rate in infants with this condition.

Unlike Feldman and Guignard, who studied the effect of gentamicin on the creatinine level during the first month of life, we were unable to demonstrate a significant effect of this drug. However, our observations were made only in the first week, and it is possible that later observations might have produced different results. There was no correlation between concentration of plasma creatinine and fluid input. While the relationship between fluid input and urea was not examined in this study, it is known that urea values are affected both by the fluid and protein intake, each of which shows considerable variation in the newborn preterm infant.

Although the most accurate measurements of glomerular filtration rate are made by using either radioisotopes or inulin clearance, these methods are not suitable for routine use in the low birthweight baby. Counahan et al. have shown that measurement of plasma creatinine is a more reliable indicator of glomerular filtration rate than creatinine clearance in children, even if a 24-hour urine collection, difficult to obtain in babies, has been completed. The most accurate measurements of true creatinine are made using high performance liquid chromatography but this method is not widely available.

Several factors make the Beckman method particularly useful for the measurement of creatinine in newborn babies. The amount of plasma required is small (25 μl) and results can be obtained quickly. Bilirubin had no effect on the creatinine values in our study and that of Cottrell and Frings. Furthermore, lipids do not appear to interfere with the methods unless present at a very high plasma concentration. While pyruvate has an effect on the measurement, it decays quickly unless a preservative is added. Ketones interfere with this method but they were not seen in any baby during this study.

Because the values derived from the equation (Appendix) lie well outside the values we obtained for babies at 2 days, it is suggested that the data presented in Table 1 are used as a reference range of plasma creatinine. It is hoped that this information will be used in the identification and treatment of renal failure in the preterm infant.

Appendix

A range of creatinine derived from the equation given in the results.

<table>
<thead>
<tr>
<th>Median values of plasma creatinine (μmol/l) (±95% confidence limits)</th>
<th>Gestation (weeks)</th>
<th>Age (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>±34 ±30</td>
<td>±41 ±36</td>
</tr>
</tbody>
</table>

We thank Professor T M Barratt for guidance, and Professor M J Healy for statistical advice;
Reference range of plasma creatinine in the newborn infant during the first month of life 215

Dr P A Davies, Dr M Silverman, and Professor I D P Wootton for help; the resident staff and Miss Castle on the Neonatal Unit at Hammersmith Hospital.

References

Correspondence to Dr P T Rudd, Department of Paediatrics and Neonatal Medicine, Hammersmith Hospital, Du Cane Road, London W12 0HS.

Received 22 October 1982

Referees 1982

We continue to depend heavily on the help we get from our referees who assess and, in many cases, suggest significant improvements to the papers. This is the only opportunity we have to acknowledge publicly the work done by them during the past year.

D P Addy C Chantler R H George
E Alberman J M Chessells J F T Glasgow
D G Altman M L Chiswick P J Graham
B M Ansell G S Clayden D B Grant
A Aperia B E Clayton S H Green
G C Arneil J B Clegg P Hambling
F N Bamford R W I Cooke R B Harcourt
P R H Barbor T J David R A Hankness
D Barltrip D P Davies D Hatch
N D Barnes P A Davies G B Haycock
T M Barratt J A Davis M J R Healy
A J Barson P Dear J Z Heckmatt
J D Baum R Dickson K S Holt
P F Benson M Dillon I B Houston
A Bentovim J A Dodge E R Howard
J G Bissenden S W D’Souza D Hull
B D Bower V Dubowitz A S Hunter
R D H Boyd P M Dunn C M Illingworth
J T Brocklebank G J Ebrahim R S Illingworth
C G D Brook D F Egan A Jacobs
O G Brooke J L Emery D I Johnson
M F G Buchanan S Evans R S Jones
J M H Buckler J W Farquhar B E Kendall
N A J Carson H R Gamsu H P Lambert
F Carswell D Gardner-Medwin J V Leonard
D N Challacombe J Garrow M I Levene
T L Chambers A M Geddes R Levinsky

continued on page 219
Reference ranges for plasma creatinine during the first month of life.
P T Rudd, E A Hughes, M M Placzek and D T Hodes

Arch Dis Child 1983 58: 212-215
doi: 10.1136/adc.58.3.212

Updated information and services can be found at:
http://adc.bmj.com/content/58/3/212

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/58/7/482.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
John Forfar, we are proud to award you the 1983 James Spence Medal, the British Paediatric Association’s highest honour, for your outstanding contributions to the advancement of paediatrics.

James Spence Medallists

- 1960 Professor A A Moncrieff
- 1961 Professor R A McCance
- 1963 Sir F Macfarlane Burnet
- 1964 Professor L S Penrose
- 1965 Dr Cicely D Williams
- 1967 Professor R R A Coombs

- 1968 Dr Mary D Sheridan
- 1969 Dr D W Winnicott
- 1970 Professor D V Hubble
- 1971 Dr W W Payne
- 1972 Dr R C Mac Keith
- 1973 Professor C A Clarke
- 1974 Dr J Bowlby
- 1976 Dr D M T Gairdner
- 1977 Professor R S Illingworth
- 1978 Dr S D M Court
- 1979 Professor K W Cross
- 1980 Professor J M Tanner
- 1981 Dr Elsie M Widdowson
- 1982 Dr D MacCarthy

Erratum

The equation printed on page 214 is incorrect and should read:

\[
\log e \text{ creatinine} = 6.400 - 0.3026 \times \log e \text{ age in days } - 0.04927 \times \text{gestation in weeks}.
\]

The authors P T Rudd, E A Hughes, M M Placzek, and D T Hodes apologise for their error.