Prolonged foreign body impaction in the oesophagus 553

the aluminium can top, a lateral chest radiograph in which the foreign object is projected away from the spine, could be of some diagnostic value. Upper gastrointestinal endoscopy, with or without a flexible fibroscope, should be considered in every case of unexplained swallowing difficulty, even if the contrast study fails to show an abnormality.

A plea is made to manufacturers of metal cans either to incorporate a distinctive radio-opaque marker on the pull-ring, or to ensure that it cannot easily be detached from the can.

We thank Dr M H Wansbrough-Jones for referring the first case to us for surgical treatment from St George’s Hospital, London.

References

Correspondence to Professor L Spitz, The Hospital for Sick Children, Great Ormond Street, London WC1N 3JH.

Received 23 February 1982

Serum pancreatic lipase as a screening test for cystic fibrosis

KAREL ADRIAENSSENS AND LODE VAN RIEL

Provincial Institute for Hygiene, Antwerp, Belgium

SUMMARY Pancreatic lipase catalyses the hydrolysis of emulsified triglycerides to form a transparent solution of monoglycerides and fatty acids. Levels of serum pancreatic lipase were measured in neonates known to have cystic fibrosis and compared with levels in control infants. During the first weeks of life infants with cystic fibrosis had raised serum pancreatic lipase values in parallel with raised serum trypsin values. A simple and specific turbidimetric dried blood spot assay for serum pancreatic lipase was used as a screening test for cystic fibrosis in the neonate.

It has been reported that the presence of a raised immunoreactive trypsin value in a dried blood spot is a useful screening test for neonates with cystic fibrosis (CF).1-3

Since pancreatic lipase activity parallels that of pancreatic trypsin during intrauterine and postnatal development4 (as it does in a variety of pancreatic disorders5), the serum pancreatic lipase values in neonates with CF may be important. We studied the blood pancreatic lipase values during the first few weeks of life of neonates known to have CF and compared them with controls, and from this a simple screening test on dried blood spots was developed.

Patients and controls

Between September 1979 and May 1981, 7 neonates with CF were identified out of 26705 prospectively screened using the two-tier immunoreactive trypsin test.1-3 CF was confirmed in these 7 infants by at least two abnormal sweat tests. Each had clinical symptoms of CF and was receiving treatment. Twenty dried blood samples had been collected from these 7 infants when aged between 5 days and 9 months, and these were available for a retrospective pancreatic lipase assay. Dried blood samples, each from the same batch as the CF sample, were used as controls, but the lipase values from the older Guthrie cards were lower because they had been stored for longer.

Method

The turbidimetric serum pancreatic lipase (EC 3.1.1.3) assay6 available as the lipase monotest (Boehringer-Mannheim), was adapted for dried blood spots. The lipase reagent was prepared as recommended by the manufacturer. Dried blood standards (lipase activity 0, 60, 120, 240, and 480 U/l serum) were prepared from appropriate dilutions of the kit serum standard with saline, and mixed with washed and packed red blood cells to a final haematocrit value of 50%, or were added to dried blood spots containing no lipase (inactivated by heating7). To elute the lipase from the dried blood sample or standard, 1.5 ml of cooled (0°C-4°C) lipase reagent was added to a dried blood spot, 6 mm in diameter, and placed in a refrigerator overnight or for at least 3 hours. As the samples were small and there was...
than in Table being respectively levels controls was old) was By The values of the infants with immunoreactive trypsin by with the trypsin 2.84–7.65 (mean 4.56) times higher than in the corresponding mean levels of the controls. By the time the second blood sample was taken (when the infants were between 25 and 87 days old) the difference between CF infants and controls was even greater, the lipase and trypsin levels being respectively 1.41–6.25 (mean 3.27) and 5.23–15.95 (mean 9.74) times higher than the corresponding mean levels of the controls.

Case 6 was the only CF neonate in whom lipase activity during the first weeks of life was within the control range, and the lipase and trypsin levels declined in parallel to the control levels present at age 46 days.

Discussion

This study confirms previous observations that serum immunoreactive trypsin levels are raised during the first weeks of life in CF patients, and furthermore that levels of serum pancreatic lipase are similarly raised. In Case 6 there was a rapid reduction in the mass of functioning exocrine pancreatic cells due to the fact that this infant was small for gestational age or owing to severity of the CF disease process itself, or perhaps to a combination of both factors. Indeed, in this patient, a clear diagnosis of severe exocrine pancreatic insufficiency was proved by the pathological results of the duodenal intubation following a pancreozymin-secretin test performed during the first month of life.

A variety of raised serum pancreatic proteins—for example trypsin, chymotrypsin, pancreatic secretory trypsin inhibitor, and now lipase are available as potential parameters for CF neonatal screening tests. The usefulness of this pancreatic lipase test, which requires no radioimmunoassay equipment, should be examined further in a more extensive prospective study.

Table Lipase and trypsin levels in infants with cystic fibrosis compared with controls

<table>
<thead>
<tr>
<th>Case</th>
<th>Birthweight (g)</th>
<th>Days after birth</th>
<th>Lipase (U/l serum)</th>
<th>Control</th>
<th>Ratio CF : control</th>
<th>Trypsin (µg/l serum)</th>
<th>Control</th>
<th>Ratio CF : control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>3070</td>
<td>5</td>
<td>130</td>
<td>48</td>
<td>25–60</td>
<td>10</td>
<td>2.70</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>77</td>
<td>27</td>
<td>8.48</td>
<td>3</td>
<td>2.85</td>
<td>2281</td>
<td>130–156</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>73</td>
<td>28</td>
<td>24–31</td>
<td>4</td>
<td>2.61</td>
<td>958</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>113</td>
<td>35</td>
<td>18–53</td>
<td>10</td>
<td>3.23</td>
<td>1492</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>150</td>
<td>24</td>
<td>12–36</td>
<td>3</td>
<td>6.25</td>
<td>1925</td>
<td>170</td>
</tr>
<tr>
<td>2*</td>
<td>3900</td>
<td>5</td>
<td>83</td>
<td>44</td>
<td>14–64</td>
<td>10</td>
<td>1.88</td>
<td>1694</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>73</td>
<td>32</td>
<td>16–45</td>
<td>4</td>
<td>2.28</td>
<td>3039</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>2650</td>
<td>6</td>
<td>103</td>
<td>44</td>
<td>14–64</td>
<td>10</td>
<td>2.34</td>
<td>1833</td>
</tr>
<tr>
<td>3*</td>
<td>3600</td>
<td>5</td>
<td>87</td>
<td>26</td>
<td>16–36</td>
<td>2</td>
<td>3.34</td>
<td>1248</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>93</td>
<td>47</td>
<td>26–74</td>
<td>10</td>
<td>1.97</td>
<td>1310</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>130</td>
<td>46</td>
<td>36–67</td>
<td>4</td>
<td>3.41</td>
<td>2303</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>157</td>
<td>46</td>
<td>36–67</td>
<td>4</td>
<td>3.41</td>
<td>2303</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>110</td>
<td>55</td>
<td>54–63</td>
<td>3</td>
<td>2.54</td>
<td>2000</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>140</td>
<td>55</td>
<td>54–63</td>
<td>3</td>
<td>2.54</td>
<td>1324</td>
<td>152</td>
</tr>
<tr>
<td>6</td>
<td>2350</td>
<td>5</td>
<td>67</td>
<td>49</td>
<td>32–71</td>
<td>10</td>
<td>1.36</td>
<td>1469</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>88</td>
<td>62</td>
<td>48–75</td>
<td>3</td>
<td>1.41</td>
<td>1025</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>45</td>
<td>37</td>
<td>20–54</td>
<td>2</td>
<td>1.21</td>
<td>285</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>29</td>
<td>74</td>
<td>53–97</td>
<td>10</td>
<td>4.77</td>
<td>1700</td>
<td>222</td>
</tr>
<tr>
<td>7</td>
<td>3300</td>
<td>9</td>
<td>353</td>
<td>74</td>
<td>53–97</td>
<td>10</td>
<td>4.77</td>
<td>1465</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>170</td>
<td>43</td>
<td>19–57</td>
<td>7</td>
<td>3.95</td>
<td>1465</td>
<td>280</td>
</tr>
</tbody>
</table>

* Boys.
We thank Dr E Tritsman for encouragement, the paediatricians for access to clinical data, and R Daenen for administrative assistance.

The Provincial Government of Antwerp provided financial support.

References

Correspondence to Dr K Adriaenssens, Provincial Institute for Hygiene, Nationalestraat 155, 2000 Antwerp, Belgium.

Received 12 January 1982

Effect of posture on gastro-oesophageal reflux in the newborn

I BLUMENTHAL AND G T LEALMAN

Department of Paediatrics, Bradford Royal Infirmary Maternity Unit, Bradford

SUMMARY The effect of posture on gastro-oesophageal reflux was studied by giving 72 orogastric tube feeds to 18 low birthweight babies. Each infant was studied in each of 4 positions: prone, supine, right, and left lateral. Brilliant blue was added to feeds and reflux was determined by staining of a cotton thread opposite the holes in a feeding tube passing from the nose to the distal oesophagus. A comparison of the prone and supine positions showed that significantly less reflux occurred in the prone position.

The optimum position in which to nurse neonates is controversial, the position adopted by most nurseries being based more on custom than reason. It is well known that regurgitation of gastric contents can result in aspiration pneumonia and death in the newborn. Recently gastro-oesophageal reflux has been incriminated as a cause of apnoea and respiratory distress in the newborn and of 'near miss' and sudden death in infants. Prompted by such hazards the aim of the study was to determine the position associated with least reflux so that a rational choice for nursing infants in our nursery could be made.

Patients and methods

Eighteen healthy low birthweight infants were studied between the 2nd and 31st (mean 10) days. Mean (± SE) birthweight was 1·78 ± 0·07 (range 1·25–2·40) kg, and gestation 34·4 ± 0·4 (range 31–37) weeks. As the infants were preterm, all of them required some tube feeds, and informed parental consent was obtained. Approval for the study was obtained from the ethical committee of the Bradford District Hospitals.

The length of each infant was measured with a neonatometer and the distance from the nares to the distal oesophagus determined by the formula: oesophageal length (cm) = 5 + (0·252 × infant length).8

A 6 FG polyvinyl feeding tube containing white crochet cotton was passed through the nose so that the distal end was calculated to lie just above the stomach. The feeding tube which contained 6 small holes at 2·5 cm intervals along its length was firmly fixed to the face. The infant was placed in the designated position (prone, supine, left, or right lateral) and allowed to settle for a few minutes. A milk feed containing brilliant blue in sufficient quantity to impart a deep blue colour was then
Serum pancreatic lipase as a screening test for cystic fibrosis.

K Adriaenssens and L Van Riel

Arch Dis Child 1982 57: 553-555
doi: 10.1136/adc.57.7.553

Updated information and services can be found at:
http://adc.bmj.com/content/57/7/553

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/