Correspondence

Comparative risks of amniocentesis and fetal blood sampling

Sir,
We read with interest the paper by Youroukos et al. on porencephalic cysts after amniocentesis. The report adds a central nervous system malformation to the literature regarding injury to the fetus after second trimester amniocentesis for prenatal diagnosis. The authors state that fetal trauma after second trimester amniocentesis is rare, and that the risk of such complications does not outweigh the value of the procedure in the prenatal diagnosis of β-thalassaemia.

In fact, the prenatal procedure used was not amniocentesis (removal of amniotic fluid), but fetal blood sampling. Midtrimester amniocentesis for antenatal detection of chromosomal and some genetic and congenital defects in at-risk populations is an accepted medical procedure. The risk of damage is low (about 0-5 to 1% at experienced centres).

Fetal blood sampling however, is currently considered to be at an applied research state, and carries a much higher risk for the fetus (about 9-4% at experienced centres).

It is important that the two techniques should remain separate when assessing the risks of fetal injury. Families who might benefit by amniocentesis might well deny themselves testing because of incorrect information.

References

LORRAINE SUSLAK AND FRANKLIN DISPOSTO
Division of Human Genetics, and Department of Pediatrics, College of Medicine and Dentistry, New Jersey Medical School, Newark, New Jersey 07103, USA

Porencephalic cysts as a result of placental damage at amniocentesis?

Sir,
Youroukos et al. reported on an infant with porencephalic cysts after midtrimester amniocentesis for exclusion of β-thalassaemia. Obviously, the placenta was punctured without fetoscopy and fetal blood was obtained. There were no problems in obtaining fetal blood nor were there other apparent complications of the procedure. The authors considered brain damage through the amniocentesis needle the most likely origin of the porencephalic cysts, especially as 2 subcutaneous nodules were overlying the defect.

I should like to suggest another mode of origin for the cysts. The puncture of the placenta, on which occasion 'several specimens of fetal blood were obtained', probably resulted in placental damage. Embolisation of clots of necrotic tissue or of thrombotic material via the umbilical vein might have led to occlusion of a fetal cerebral artery. Consequent brain necrosis could have resulted in a porencephalic cyst. Such events have often been observed in monovular twin gestations after the death of one twin with a common placenta with vascular anastomoses.

The most common defects were porencephalic cysts, microcephaly, or hydrocephaly; however, skin lesions similar to the nodules in the patient of Youroukos et al., have been observed too. A Japanese group has recently shown by combined angiography and computerised tomography scan that a cerebral artery ended abruptly at the location of a cyst. Hence vascular occlusion was the most likely cause of the cyst.

In the case reported by Youroukos et al. several observations leave both possibilities open or might even favour a placental origin of the cysts. Firstly the fact that the fetus (which would have been severely damaged by the needle) was not spontaneously aborted, secondly the uneventful puncture, and thirdly the discrepancy between severe brain damage and discrete 'needle points'.

In this particular case neither direct nor indirect damage of the fetus could be demonstrated; however, when using invasive prenatal measures the possibility of indirect damage of the fetus from embolic events caused by placental damage through a needle puncture should be considered.

References

A SCHINZEL
Institute of Medical Genetics, University of Zürich, Steinwiessstrasse 75, CH-8032 Zürich, Switzerland

Metoclopramide poisoning in children

Sir,
I read with great interest the paper by Low and Goel and would like to comment on two points:
Visceral larva migrans and Trichurus vulpis

Sir,

Sakano et al.\(^1\) reported 2 cases of visceral larva migrans (VLM) which they concluded were due to infection with *Trichurus vulpis*. They based this conclusion on the results of immunoelectrophoretic studies in which precipitation lines were found between the patients’ serum and *T. vulpis* antigen. Precipitation was also found against *Toxocara canis* but it was concluded that this was non-specific according to results of immunoelectrophoresis.\(^3\) Treatment with thiabendazole was considered effective on the basis of a decrease in the number of arcs of precipitate and in the eosinophil count.

We are reluctant to accept *T. vulpis* as the cause of the VLM in these cases for the following reasons:

1. There is no evidence that *T. vulpis* (a common parasite of the caecum and large-intestine of dogs) follows more than a transient migration, as an immature worm, into the glands of the gut wall of its usual host before emerging into the gut lumen as an adult.
2. Immunological methods of diagnosis for helminth infections are not generally precise, even with so-called ‘purified’ specific antigens, and can seldom give more than an indication of relationship to a nematode and not true identity.
3. Even if the results were to prove that the patients had an antibody response specific for *T. vulpis*, this would not be evidence of visceral migration. Dogs infected by the parasite show a rise and fall in antibody titres in response to local invasion of the bowel and there is no reason to believe this would not happen in man. The immunology of *T. vulpis* has been reviewed by Beer.\(^4\)
4. Thiabendazole is not a particularly effective anti-helminthic for treatment of adult *T. vulpis* in dogs. In VLM due to *T. canis* symptoms subside spontaneously, including the eosinophilia (though generally after the clinical symptoms), irrespective of treatment. We feel that in these cases the response ascribed to thiabendazole was likely to be coincidental.
5. We think that the positive precipitation reaction to *T. canis* antigen (admittedly non-specific) is a more likely cause of the symptoms described, particularly since *Toxocara sp.* is a known cause of VLM.

We agree that the diagnosis of VLM can be difficult and final proof can be established only by demonstrating the larvae in the tissues. Nevertheless, we are unhappy to add yet another parasite as a cause of this syndrome without clearer evidence.

References

Metoclopramide poisoning in children.

M Casteels-Van Daele

Arch Dis Child 1981 56: 405-406
doi: 10.1136/adc.56.5.405-b

Updated information and services can be found at:
http://adc.bmj.com/content/56/5/405.3.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/