Ketotifen and asthma

The success of sodium cromoglycate (SCG) as a prophylactic drug for the treatment of allergic diseases has been limited by the need to administer it topically. This has led to a continued search for drugs with similar anti-allergic properties but which can be taken orally and are active systemically. Such drugs would have advantages in the treatment of multi-organ sensitivities and for very young asthmatics unable to use a spinhaler.

Ketotifen has recently been introduced, and promoted, as a clinically effective anti-allergic drug which can be taken by mouth. It is a cycloheptathiophene derivative with strong antihistaminic properties, but more interest has been aroused by its anti-anaphylactic properties. Experimental studies have shown that in vitro the drug can inhibit the antigen-induced release of histamine and slow-reacting substance-A from rat mast cells. Like SCG it can also inhibit passive cutaneous anaphylaxis in experimental animals, but current evidence suggests that the mode of action of the two drugs is different. Studies in man have examined its effect on artificially-induced bronchospasm. Girard and Cuevas showed that pretreatment with ketotifen had a protective effect against aerosol challenges of offending allergens in adult asthmatics. Further work confirmed this effect and the degree of protection was found to equal that afforded by pretreatment with SCG. However a study in children showed there was no benefit from pretreatment with ketotifen in bronchial challenge tests; in this respect it was different from SCG, which gave good protection in children. Exercise-induced wheezing generally responds to prophylactic SCG, and one small study in adults suggested that ketotifen had a similar prophylactic property.

The evidence from experimental studies in man and animals prompted clinical trials of ketotifen in the prophylaxis of asthma in adults. Several open studies and comparisons with clemastine claimed that ketotifen was of value, but in many cases the trial design was poor. Other studies have compared ketotifen with SCG and have found no difference in symptoms during each period of treatment, concluding that ketotifen had a beneficial effect. However Mattson et al, compared ketotifen, SCG, and a placebo and found that neither active drug showed any advantage over placebo in a selected group of patients. This work showed the pitfalls of attempting to evaluate one drug by comparing it with another. A more precise double-blind evaluation of the drug has recently been reported and this showed a slight beneficial effect of ketotifen in a selected group of asthmatic adults, but many complained of unacceptable drowsiness.

Asthma in children often has a demonstrable allergic component and would be expected to respond well to an effective oral anti-allergic drug. However the assessment of any new treatment for childhood asthma needs carefully controlled trials in view of the intermittent nature of the symptoms and the tendency for spontaneous improvement. Hence claims supporting ketotifen as an effective treatment, which are based on open trials are of little value, and comparison with SCG can be misleading. Properly designed double-blind trials of ketotifen against placebo suggest that ketotifen is of minimal value or of no value in the prophylaxis of childhood asthma. Excessive drowsiness has not been reported as a side effect in children, but excess weight gain has been noted, probably owing to ketotifen’s appetite-stimulating properties.

On current evidence, ketotifen appears similar to previously introduced oral anti-allergic drugs—such as doxantrazole or bufrolin sodium. These drugs were effective in vitro and in experimental studies, but they failed to be effective in clinical practice. Ketotifen has been vigorously promoted and proponents have argued the need for longer periods of assessment (of at least 3 months). However there is little evidence of a cumulative beneficial effect. Indeed its protective effect against artificially-induced bronchospasm reached a plateau after 4 weeks’ pretreatment. It may be that further clinical experience will show a beneficial cumulative effect but at present ketotifen is unlikely to replace established prophylactic drugs, and should not be recommended for children.

References

4. Wells A, Taylor B. A placebo-controlled trial of ketotifen (HC 20–511, Sandoz) in allergen induced


8 Mrackova E, Sach J, Zavazal V, Minarova E, Rickova V. The prophylaxis of asthma using ketotifen. Allergol Immunopathol (Madr) 1977; Supplement 5, 47-50.


10 Stangl B, Furlan J, Ustar M, Janezic A. The protective effect of ketotifen in bronchial asthma. Respiration 1980; Supplement 1, 12-5.


J K SARSFIELD
Harrogate General Hospital,
Knaresborough Road,
Harrogate HG2 7ND,
North Yorkshire
Ketotifen and asthma.

J K Sarsfield

Arch Dis Child 1981 56: 243-244
doi: 10.1136/adc.56.4.243

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/