Frequency of transient hypothyroxinaemia in low birthweight infants

Potential pitfall for neonatal screening programmes

SUSAN UHRMANN, KEITH H MARKS, M JEFFREY MAISELS, HOWARD E KULIN, MICHAEL KAPLAN, AND ROBERT UTIGER

Department of Pediatrics, Division of Newborn Medicine and Division of Endocrinology, Milton S Hershey Medical Center of The Pennsylvania State University College of Medicine, and Department of Medicine, Division of Endocrinology, The University of Pennsylvania School of Medicine

SUMMARY Thyroid function was studied in 54 low birthweight infants during a 3-week period. Each infant was placed in one of three groups. Group 1 (n = 21), infants who were well and appropriately grown for gestational age; group 2 (n = 23), infants who were appropriately grown but who had hyaline membrane disease; group 3 (n = 10), infants who were small-for-gestational-age. In group 1, 5 (24%) infants had at least one serum thyroxine value <3.0 μg/100 ml (39 nmol/l). There were 8 (35%) infants in group 2 who had similarly low serum thyroxine values, as did 5 (50%) of the 10 infants in group 3. Serum thyrotropin levels and serum binding of thyroid hormones, as measured by a T3-charcoal uptake test, were normal in all infants. In all instances but 2, serum thyroxine values were at least 4·0 μg/100 ml (51 nmol/l) by the end of the 3-week period. There is thus a high incidence of transient ‘hypothyroxinaemia’ in low birthweight infants, particularly if such infants have hyaline membrane disease or are small-for-gestational-age. These findings must be considered when interpreting results of screening programmes for congenital hypothyroidism and they lend further support to the use of a combination of serum thyroxine and thyrotropin determinations for optimum screening of such infants.

The high incidence of congenital hypothyroidism and the usefulness of serum thyroxine (T4) and thyrotropin (TSH) measurements in detecting the disorder has resulted in recommendations for neonatal screening programmes.1 Gestational age2 and birthweight3–4 are known to affect values of hormones in cord blood. We have published results indicating that the postnatal changes in serum T4 and TSH concentrations in well, low birthweight infants are similar to those of term babies in the first 3 weeks of life, although mean T4 values are lower.5 Findings are similar for infants who are small-for-gestational-age (SGA) and those with hyaline membrane disease.6–7

A review of our data showed a striking number of patients with serum T4 concentrations <3 μg/100 ml (39 nmol/l). In all but 2 patients—who eventually proved to be normal—the hypothyroxinaemia was transient and not accompanied by raised serum TSH or abnormalities of serum thyroid hormone binding.

Since transient hypothyroxinaemia in the newborn infant has been reported,1 8–9 we felt it was important to record its incidence in a population of low birthweight infants.

Materials and methods

Fifty-four preterm infants had serum T4 and TSH measurements performed, when possible, on cord blood and blood collected by venepuncture at 24, 48, and 72 hours as well as at 1, 2, and 3 weeks of age. Informed consent was obtained from one or both parents.

Patients (Table 1) were assigned to group 1 (AGA, n = 21) if they were appropriately grown for gestational age and were well or had only mild illness. Group 2 (HMD, n = 23) comprised AGA infants with classical hyaline membrane disease,10 and group 3 (SGA, n = 10) comprised infants who were SGA and who were well or had only mild illness.
Hormones was measured indirectly by a modification of the expressed was determined.

Results

Serum T4 results at each time period for the three groups are shown in Table 2; the ranges indicate the wide variation in serum T4 concentrations in these infants. Table 3 shows the overall high incidence of serum T4 values <3·0 μg/100 ml as a function of time, the peak incidence occurring between 3 days and 1 week. Of the total of 260 samples assayed, 25 (9·6%) had T4 values <3·0 μg/100 ml. Of a total of 81 serum T4 measurements at 72 hours and 1 week (the age range generally recommended for screening), 17 (21%) were <3·0 μg/100 ml. Five (24%) infants in group 1 had at least one serum T4 value <3·0 μg/100 ml. There were 8 (35%) infants in group 2 who had similarly low values as did 5 (25%) of the 10 infants in group 3. The Figure shows the distribution of serum T4 and TSH results for the groups, expressed as a percentage of the total number of samples for all groups. With 2 exceptions (both infants with HMD who were subsequently normal), all patients had serum T4 concentrations of at least 4·0 μg/100 ml (51 nmol/l) by 3 weeks. Similarly, all infants had serum TSH concentrations <12 μU/ml at 3 weeks of age.

The T3-charcoal uptake value, an indirect measurement of serum T4-binding capacity (performed on all except 5 of the infants), was normal in all patients. These data exclude decreased serum thyroid hormone binding as the cause of the hypothyroxinaemia.

Table 1 The three study groups, means ± SD

<table>
<thead>
<tr>
<th>Group</th>
<th>Gestational age (weeks)</th>
<th>Birthweight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (AGA)</td>
<td>n=21</td>
<td>32·6±3·2</td>
</tr>
<tr>
<td>2 (HMD)</td>
<td>n=23</td>
<td>32·7±2·1</td>
</tr>
<tr>
<td>3 (SGA)</td>
<td>n=10</td>
<td>32·8±3·0</td>
</tr>
</tbody>
</table>

AGA = appropriately grown for gestational age; HMD = hyaline membrane disease; SGA = small-for-gestational age.

Measurements of serum T4 and TSH were made by radioimmunoassay as described previously. All samples from an individual infant were analysed in the same assay run. Serum binding of thyroid hormones was measured indirectly by a modification of the T3-charcoal technique of Bermudez et al. The incidence of serum T4 results <3·0 μg/100 ml was expressed as a percentage of the total number of samples collected. The value of 3·0 μg/100 ml was arbitrarily chosen as being very low for a neonatal screening result and was 2·5 SDs below the mean reported by Cuestas for healthy preterm infants in the first 3 months of life.

Results

Serum T4 results at each time period for the three groups are shown in Table 2; the ranges indicate the wide variation in serum T4 concentrations in these infants. Table 3 shows the overall high incidence of serum T4 values <3·0 μg/100 ml as a function of time, the peak incidence occurring between 3 days and 1 week. Of the total of 260 samples assayed, 25 (9·6%) had T4 values <3·0 μg/100 ml. Of a total of 81 serum T4 measurements at 72 hours and 1 week (the age range generally recommended for screening), 17 (21%) were <3·0 μg/100 ml. Five (24%) infants in group 1 had at least one serum T4 value <3·0 μg/100 ml. There were 8 (35%) infants in group 2 who had similarly low values as did 5 (25%) of the 10 infants in group 3. The Figure shows the distribution of serum T4 and TSH results for the groups, expressed as a percentage of the total number of samples for all groups. With 2 exceptions (both infants with HMD who were subsequently normal), all patients had serum T4 concentrations of at least 4·0 μg/100 ml (51 nmol/l) by 3 weeks. Similarly, all infants had serum TSH concentrations <12 μU/ml at 3 weeks of age.

The T3-charcoal uptake value, an indirect measurement of serum T4-binding capacity (performed on all except 5 of the infants), was normal in all patients. These data exclude decreased serum thyroid hormone binding as the cause of the hypothyroxinaemia.

Table 2 Serum T4 values (μg/100 ml) at different ages in the 3 study groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Age</th>
<th>Cord</th>
<th>24 hours</th>
<th>48 hours</th>
<th>72 hours</th>
<th>1 week</th>
<th>2 weeks</th>
<th>3 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (AGA)</td>
<td>Mean</td>
<td>6·2 (1·6-9·8)</td>
<td>7·3 (2·6-14·0)</td>
<td>7·1 (2·5-14·9)</td>
<td>7·8 (2·2-14·6)</td>
<td>8·8 (5·2-12·8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>n=8</td>
<td>n=11</td>
<td>n=19</td>
<td>n=19</td>
<td>n=18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (HMD)</td>
<td>Mean</td>
<td>8·9 (4·5-16·0)</td>
<td>5·7 (2·4-10·0)</td>
<td>5·9 (1·6-14·0)</td>
<td>6·9 (1·7-14·3)</td>
<td>8·0 (2·6-14·4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>n=7</td>
<td>n=15</td>
<td>n=22</td>
<td>n=21</td>
<td>n=20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (SGA)</td>
<td>Mean</td>
<td>4·8 (2·8-7·8)</td>
<td>8·4 (2·4-21·6)</td>
<td>7·3 (2·6-19·0)</td>
<td>7·0 (1·6-20·0)</td>
<td>5·0 (2·4-8·6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>n=3</td>
<td>n=9</td>
<td>n=10</td>
<td>n=9</td>
<td>n=6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion: traditional to SI units 1 μg/100ml = 13 nmol/l.

Table 3 Incidence of thyroxine values <3·0 μg/100 ml at each time studied

<table>
<thead>
<tr>
<th>Age</th>
<th>Cord</th>
<th>24 hours</th>
<th>48 hours</th>
<th>72 hours</th>
<th>1 week</th>
<th>2 weeks</th>
<th>3 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=18)</td>
<td>(n=32)</td>
<td>(n=39)</td>
<td>(n=31)</td>
<td>(n=50)</td>
<td>(n=46)</td>
<td>(n=44)</td>
</tr>
<tr>
<td>Number (and %) with T4 <3·0 μg/100 ml</td>
<td>2 (11)</td>
<td>1 (3)</td>
<td>2 (5)</td>
<td>5 (16)</td>
<td>9 (18)</td>
<td>5 (11)</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>
AGA = appropriately grown for gestational age; HMD = hyaline membrane disease; SGA = small-for-gestational-age.

Figure Distribution of serum thyroxine and thyrotropin values in the study groups.

Conversion: traditional to SI units 1 μg/100 ml = 13 nmol/l.

Discussion

Our previous observations that low serum T4 concentrations can occur transiently after birth in low birthweight infants have now been extended to show that a serum T4 concentration of <3·0 μg/100 ml is a remarkably common occurrence. These low levels occurred at some point in the first 3 weeks of life in 24% of AGA babies, in 35% of babies with HMD, and in 50% of those who were SGA. The cases of transient hypothyroxinaemia reported earlier differ from these because of increased serum TSH concentrations in the former group. Our findings of normal serum TSH levels with low serum T4 values are consistent with a hypothalamic-pituitary origin resulting from impaired thyrotropin-releasing hormone or TSH secretion. The results cannot be explained by abnormalities in serum thyroid hormone-binding proteins, since no abnormalities in T3-charcoal uptake were found. Whatever the explanation, our findings stress the difficulty in evaluating serum T4 measurements in low birthweight infants in the first 3 weeks of life, and show the importance of performing serum TSH determinations when low T4 values are found. In every patient, the finding of a normal TSH ruled out primary hypothyroidism. The increase in serum T4 levels with age makes permanent TSH or thyrotropin-releasing hormone deficiency highly unlikely.

Despite the high incidence of low serum T4 measurements in this population of infants, prudence demands that serum T4 values <3 or 4 μg/100 ml (39–51 nmol/l) should be followed by repeat determinations of T4 and TSH until a decision for normality, or the institution of treatment can be made. Although with two exceptions the serum T4 levels in our patients returned to normal by 3 weeks of age, in some infants a longer period of follow-up may be necessary to ensure normality. The particularly high frequency of very low serum T4 in infants with HMD and those who are SGA must be borne in mind when evaluating such patients.

References

Frequency of transient hypothyroxinaemia in low birthweight infants

Correspondence to Dr M Jeffrey Maisels, Department of Pediatrics, The Milton S Hershey Medical Center, Hershey, Pennsylvania 17033, USA.

Received 6 November 1979

The following articles will appear in future issues of this journal:

Benign carotenaemia in children P J Congdon, J Kelleher, P Edwards, and J M Littlewood

Testicular function after combination chemotherapy in childhood for acute lymphoblastic leukaemia S M Shalet, I M Hann, M Lendon, P H Morris Jones, and C G Beardwell

Renal-vertebral index in normal children C Bacopoulos, M Papahatzi-Kalmadi, T Karpathios, T Thomaidis, and N Matsaniotis

Long-term prognosis for infants with intrahepatic cholestasis and patent extrahepatic biliary tract M Odiève, M Hadchouel, P Landrieu, D Alagille, and N Eliot

Rotavirus, adenovirus, and non-viral enteropathogens in diarrhoea T Vesikari, M Mäki, H K Sarkkinen, P P Arstila, and P E Halonen

Laryngomalacia and inspiratory obstruction in later childhood G J Smith and D M Cooper

Ketotifen in the prophylaxis of childhood asthma R C Groggins, E J Hiller, A D Milner, and G M Stokes
Frequency of transient hypothyroxinaemia in low birthweight infants. Potential pitfall for neonatal screening programmes.

S Uhrmann, K H Marks, M J Maisels, H E Kulin, M Kaplan and R Utiger

Arch Dis Child 1981 56: 214-217
doi: 10.1136/adc.56.3.214

Updated information and services can be found at:
http://adc.bmj.com/content/56/3/214

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/