Conjoined twins in West Africa

OLUWATOPE A MABOGUNJE AND JAMES H LAWRIE

Department of Surgery, Ahmadu Bello University Hospital, Zaria, Nigeria

SUMMARY 12 cases of conjoined twins from West Africa were reported between 1936 and 1978. Eight sets were liveborn and were surgically separated either in local hospitals or abroad. Four were stillborn. Two new cases of stillborn conjoined twins were recently delivered at this hospital. The most common type and the ones most likely to be born alive were the omphalopagi. Surgical separation was successful in 5 cases but the twins separated at Zaria died a month later. Emergency operations were performed on the pygopagus and ischiopagus, and one member of the former but both of the latter died. The thoracopagus and dicephalus twins were stillborn. However, necropsy findings in one of the thoracopagi indicate that surgical separation would have been feasible had the twins been born alive. The internal mechanical factors causing cardiac defects in such twins may be relevant to the study of the pathogenesis of congenital cardiac malformations.

The incidence of conjoined twins in West Africa is not precisely known. Studies of such twins contribute to the knowledge of embryonic duplication, fetal development, and the mechanism of congenital malformations. Noonan has stressed the relevance of thoracopagus conjoined twins in the study of the mechanism of cardiac malformations. We have reported on the 2 sets of conjoined twins separated at this hospital in Zaria. This report is a collective review of all cases of conjoined twins in West Africa up to 1978, plus 2 new cases of stillborn conjoined twins delivered recently in this hospital—namely, a thoracopagus and a dicephalus.

Material

All data relating to cases of conjoined twins reported from West Africa between 1936 and 1978 were collected. The clinical, epidemiological, surgical, and necropsy data were analysed. The system of classification recommended by Potter and Craig is used to describe such twins (Table 1).

Results

Stillbirths (Table 2). There were 6 stillborn sets of twins comprising 2 dicephalus twins, 2 thoracopagi, and 1 set each of diprosopus and omphalopagus. Although the dicephalus twins of Dakar were delivered vaginally, the recent dicephalus twins of Zaria were delivered by caesarean section because of shoulder dystocia and rupture of the uterus. The former had 3 upper limbs, dipus tribrachius, while the latter had only a pair, dipus dibrachius (Fig. 1).

Table 1 Type and sex distribution of conjoined twins born in West Africa between 1936 and 1978

<table>
<thead>
<tr>
<th>Type</th>
<th>Liveborn (n=8)</th>
<th>Stillborn (n=6)</th>
<th>Male (n=2)</th>
<th>Female (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omphalopagus (n=6)</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Dicephalus (n=2)</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thoracopagus (n=2)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Diprosopus (n=1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ischiopagus (n=1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pygopagus (n=1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2 Stillbirths

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Country</th>
<th>Age of mother (years)</th>
<th>Type</th>
<th>Sex</th>
<th>Birthweight (kg)</th>
<th>Shared organs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>Bowesman</td>
<td>Gambia</td>
<td>?</td>
<td>Omphalopagus</td>
<td>F</td>
<td>4.5</td>
<td>No necropsy</td>
</tr>
<tr>
<td>1958</td>
<td>Stiggelbout</td>
<td>Nigeria</td>
<td>25</td>
<td>Thoracopagus</td>
<td>F</td>
<td>2.4</td>
<td>Pericardium</td>
</tr>
<tr>
<td>1971</td>
<td>Engman and Arkutu</td>
<td>Ghana</td>
<td>26</td>
<td>Diprosopus</td>
<td>F</td>
<td>1.1</td>
<td>Y-eosophagus, Y-trachea, heart</td>
</tr>
<tr>
<td>1975</td>
<td>Sylla et al.</td>
<td>Senegal</td>
<td>29</td>
<td>Dicephalus</td>
<td>F</td>
<td>?</td>
<td>Humerus, heart, liver, jejenum</td>
</tr>
<tr>
<td>1980</td>
<td>Mabogunje</td>
<td>Nigeria</td>
<td>21</td>
<td>Thoracopagus</td>
<td>F</td>
<td>2.3</td>
<td>No necropsy</td>
</tr>
<tr>
<td>1980</td>
<td>Mabogunje</td>
<td>Nigeria</td>
<td>25</td>
<td>Dicephalus</td>
<td>M</td>
<td>2.6</td>
<td>Heart, liver, jejenum</td>
</tr>
</tbody>
</table>
However, the recent thoracopagus twins of Zaria were not necropsied (Fig. 2).

Livebirths (Table 3). Four of the omphalopagus twins were delivered vaginally. The omphalopagus of Ho, Ghana, were members of a triplet pregnancy. The first was a boy delivered vaginally, following which caesarean section was performed to deliver the conjoined girls. The omphalopagus of Azare, had a prominent umbilical hernia (Fig. 3).

The surgical data are summarised in Table 4. Both members of 4 omphalopagi were successfully separated, but the Azare twins died 35 days and 37 days postoperatively from intractable nosocomial...
Table 4 Surgical data

<table>
<thead>
<tr>
<th>Author</th>
<th>Type</th>
<th>Birthweight (kg)</th>
<th>Age</th>
<th>Indication</th>
<th>Shared organs</th>
<th>Result of separation</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>McLaren & Aird</td>
<td>Omphalopagus</td>
<td>3-5</td>
<td>6 months</td>
<td>Elective</td>
<td>Xyphoid</td>
<td>Survived</td>
<td>Survived</td>
</tr>
<tr>
<td></td>
<td>Omphalopagus</td>
<td></td>
<td>4 months</td>
<td>Elective</td>
<td>Xyphoid</td>
<td>Survived</td>
<td>Cardiovascular collapse (1 hour)</td>
</tr>
<tr>
<td>Holgate & Ikpeme</td>
<td>Omphalopagus</td>
<td>3-6</td>
<td>7 hours</td>
<td>Elective</td>
<td>Xyphoid, liver</td>
<td>Survived</td>
<td>Survived</td>
</tr>
<tr>
<td>Gupta</td>
<td>Pygopagus</td>
<td>3-6</td>
<td>5 months</td>
<td>Emergency</td>
<td>Gluteus, sacrum, spinal cord,</td>
<td>Survived</td>
<td>Sacrificed</td>
</tr>
<tr>
<td></td>
<td>Ischiopagus</td>
<td>5-2</td>
<td>60 hours</td>
<td>Emergency</td>
<td>ileum, colon, bladder, cloaca</td>
<td>Survived</td>
<td>Hypoplastic lungs</td>
</tr>
<tr>
<td>Takyi & Bankole al. & Mabogunje & Lawrie</td>
<td>Omphalopagus</td>
<td>?</td>
<td>9 days</td>
<td>Elective</td>
<td>Xyphoid, liver</td>
<td>Died</td>
<td>Died</td>
</tr>
<tr>
<td></td>
<td>Heteropagus</td>
<td>2-6</td>
<td>5 weeks</td>
<td>Elective</td>
<td>Liver</td>
<td>Survived</td>
<td>Sepsis (9 days)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Circulatory failure (30 hours)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enteral sepsis (35 and 37 days)</td>
</tr>
</tbody>
</table>

Fig. 3 Omphalopagus twins of Azare separated at the ABU Hospital, Zaria, April 1975.

Fig. 4 Heteropagus twins of Ndu Sule separated at the ABU Hospital, Zaria, June 1975.

enterocolitis. Also one member of the omphalopagus of Ho died of sepsis 9 days after separation (H. K. Takyi, personal communication). Emergency separation of the pygopagus was performed because of intestinal obstruction and recurrent spells of apnoea in one of the twins who died during the operation. Necropsy showed that her lungs were hypoplastic and un aerated. She had apparently been
kept alive by her conjoined sister and would have been incapable of an independent existence. The ischiopagus twins also had emergency separation because of intestinal and urinary obstruction, but both developed multiple cardiorespiratory arrests shortly after surgery terminating soon after in congestive heart failure with pulmonary oedema and peripheral cyanosis.

After the separation of the heteropagus (Fig. 4), the autosite was followed up regularly for 10 months; during this time her development was normal. Later however, we received a report from her local dispensary that she had died during that she had died at age 19 months during the cerebrospinal meningitis epidemic of 1977. The surviving member of the omphalopagus of Ho is now 9 years old and in good health (H K Takyi, 1979, personal communication), and the longest known survivor is Wariboko of the Kano omphalopagus, separated by Aird. Now 26 years old, she is a trained nurse and midwife on the staff of this hospital. Recently, she delivered her second healthy baby boy.

Discussion

Conjoined twins are monozygotic twins, incompletely separated. The separation probably occurs at the first blastomeres but it may take place at the gastrula stage. In humans, long or irregular menstrual circles appearing in the very young or in premenopausal women may be associated with delayed ovulation and over-ripening of the ovum which would then be more susceptible to blastomeric duplication. However, the oldest mother in this series was only 35 years old, and the others ranged from 20 to 30 years. This is similar to the findings of Milham, who studied 22 sets of conjoined twins from New York State, USA, and is difficult to reconcile with the concept of the ageing gamete. Milham also found among the conjoined twins, a pronounced tendency to prematurity, low combined birthweight, an excess of stillbirths, and a preponderance of females, features which are all present in this series.

The rate of monozygotic twinning appears to be similar for all races, while the dizygotic twinning rate differs considerably and is known to be high in some parts of West Africa. Working in Eastern Nigeria, Cox suggested that the effect of protein and riboflavin deficiencies on the ovary may cause multiple ovulation or polyovular follicles, or otherwise cause delayed implantation in the endometrium. Any of these effects may account for the high frequency of multiple births observed in that region. Although most of such births would be expected to be dizygotic it would be of great interest to examine the surviving obstetrical records of the same region during the recent civil war (Biafran war), when malnutrition was widespread, in order to ascertain whether there were still more multiple births or whether more conjoined twins were delivered.

The most common conjoined twins are the omphalopagi, accounting for over 40% of the collected series of Bankole et al. and for 43% of the West African series. They are also the most often separated, sometimes with quite simple anaesthetic and surgical facilities. Next in frequency are the thoracopagi in which there is currently great interest, because of the new insight afforded by the study of their cardiac conjunction in relation to the pathogenesis of other cardiac malformations. The cardiac findings in these twins are of three types. There may be pericardial fusion only with 2 normal hearts, atrial connection but ventricular separations, or ventricular connections usually associated with multiple cardiac defects. The twins necropsied by Stiggelbout for instance were of the pericardial type and would have been eminently separable had they been born alive. The possibility of successful separation in the twins of other types would depend on the particular clinical and electrocardiographic findings. Furthermore cardiac catheterisation and angiography may be indicated in order to assess the defects, as is the practice in other cases of congenital cardiac malformations. Indeed Edwards et al. have presented a plan for the potential surgical salvage of at least a member of such conjoined twins with complex atrial and ventricular fusions.

The cardiac anomalies described in thoracopagus conjoined twins include anomalous pulmonary venous return, common atrium, single ventricle, cono-truncal abnormalities, and endocardial cushion defects. In addition to genetic control, it is possible that mechanical factors arising from thoracic conjunction are involved in the pathogenesis of these anomalies. This possibility is further enhanced by the demonstration by Gessner of cardiac lesions produced in chick embryos by mechanical means. The problem then would be to identify the types of intrauterine factors which may constitute comparable mechanical forces leading to the development of cardiac defects even in the single fetus.

A prenatal diagnosis of conjoined twinning would obviously be of help in planning surgical separation, and would also prompt elective caesarean section to improve the chances of liveborn twins. Prenatal diagnosis is facilitated by using the radiographic criteria established by Gray et al. These include close approximation of the chest of the twins who face each other and have an exaggerated lordosis. Diagnostic ultrasound has also been recently used for this purpose. It is remarkable that only 2 sets of
twins in this series were delivered by caesarean section and, in one instance, the twins had already died and the uterus ruptured after prolonged labour.

The reason for a greater number of females in most series of conjoined twins is unknown. Milham suggested that it might be due to the early loss of conjoined male embryos. In more recent reports from the USA and Sweden the male:female ratio seems to be approaching 1:1. Therefore, Källén and Rybo have suggested that better prenatal care may be decreasing such male losses resulting in a more even sex distribution. If this explanation is correct, the male:female ratio of 1:6 in West Africa would thus reflect our continuing deficiencies in antenatal care.

References

Correspondence to Dr O A Mabogunje, Department of Surgery, Ahmadu Bello University Hospital, Zaria, Nigeria.

Received 24 July 1979
Conjoined twins in West Africa.

O A Mabogunje and J H Lawrie

Arch Dis Child 1980 55: 626-630
doi: 10.1136/adc.55.8.626

Updated information and services can be found at:
http://adc.bmj.com/content/55/8/626

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/