when the patients with hypoparathyroidism were treated.

Tabae-Zadeh et al. (1972) reported a patient with paroxysmal kinesogenic choreoathetosis and basal ganglia calcification due to idiopathic hypoparathyroidism, in whom the extrapyramidal motor features improved when normocalcaemia was restored. They suggested that the movement disorder might be due to a direct effect of hypocalcaemia on already damaged neurones.

Hower et al. (1974) described a child with myopathy and idiopathic hypoparathyroidism with increased CPK activity which returned to normal with treatment. They suggested that hypocalcaemia led to lowered cell membrane potentials resulting in increased cell membrane permeability allowing the escape of cytoplasmic proteins.

The findings in this patient suggest that the extrapyramidal motor features were not due directly to the basal ganglia calcification, but that both they and the increased CPK activity resulted from the effects of hypocalcaemia on cell membrane potentials of neurones and muscle.

I am grateful to Dr D. B. Grant for advice and for permission to describe a patient under his care, and to Dr R. D. Hoare for the CAT scan.

References


Correspondence to Lt Col. R. O. Walters, RAMC, Cambridge Military Hospital, Aldershot, Hants.

Half life of theophylline in the preterm baby with apnoeic attacks

D. M. KING, A. F. HEELEY, AND J. A. KUZEMKO

Departments of Biochemistry and Paediatrics, District Hospital, Peterborough

SUMMARY Plasma theophylline levels were measured by an enzyme immunoassay method in 6 preterm babies. The method gave accurate and rapid results. The study showed a considerably prolonged half life of an oral preparation.

Xanthine derivatives have become established as a method of treatment of recurrent apnoeic attacks in the preterm baby (Lucey, 1975). However, because of the interpatient variation and prolonged half-life of theophylline in such babies (Giacoia et al., 1976), it is essential that plasma levels be estimated frequently so that adequate doses of the drug can be maintained and serious side effects avoided.

We used an enzyme immunoassay method (EMIT, Syva) for determining plasma theophylline levels on as little as 10 µl plasma. It was known that plasma concentrations measured by either high pressure liquid chromatography or EMIT showed excellent agreement (Chang and Bastiani, 1977).

Patients and methods

Six preterm babies were studied. Details of gestation periods and birthweights are given in the Table. After one attack of apnoea lasting at least 25 seconds, a single oral theophylline preparation was given by a nasogastric tube (theophylline BP as sodium glyconate salt 5 mg/kg). Plasma theophylline levels (µg/ml) were measured at 0, 2, 4, 8, 12, 24, and 48 hours. If a baby had a second attack of apnoea during the period he was withdrawn from the study.

Plasma theophylline levels were estimated by enzyme immunoassay using the EMIT-aad kit.

Table Details of the 6 preterm babies

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (days)</th>
<th>Birthweight (g)</th>
<th>Gestation (weeks)</th>
<th>Theophylline half life (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1370</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2500</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1400</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1030</td>
<td>28</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2240</td>
<td>37</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>1950</td>
<td>34</td>
<td>24</td>
</tr>
</tbody>
</table>
Half life of theophylline in the preterm baby with apnoeic attacks

(Syva). Volumes of 10 μl plasma were pipetted into microsample cups and thereafter dilutions, reagent additions, and reaction kinetics were performed on the Gilford 3500 analyser in accordance with the manufacturer's instructions for this assay. Under these conditions, neonatal plasma, to which known amounts of theophylline were added, gave coefficients of variation between expected and measured concentrations ranging from 6.5% at 2 μg/ml to 5.5% at 10 μg/ml; values which are compatible with the reported between-run precision of the assay itself.

Results

Peak plasma levels occurred between 4 and 8 hours after the single oral administration of theophylline. The slope of the log of the plasma concentration in the postabsorptive phase plotted against time was used to determine the half-life of the drug. The theophylline half-life for each baby is shown in the Table. The range was 24–64 hours.

Comment

The enzyme immunoassay method for measuring plasma theophylline levels by using microsamples in this group of preterm babies was found to give accurate, reproducible, and rapid (within 10 min) results, thus allowing theophylline dosage to be regulated as often as is clinically indicated. The study showed the prolonged half life of an oral theophylline preparation and the wide interpatient and within-patient variations.

EMIT reagents were kindly donated by Syva Corp. and the 3500 analyser lent for laboratory evaluation by Gilford Instruments Ltd. The oral theophylline was prepared by McCarthy's Pharmaceuticals.

References


Correspondence to Dr J. A. Kuzemko, Peterborough District Hospital, Thorpe Road, Peterborough PE3 6DA.
Half life of theophylline in the preterm baby with apnoeic attacks.
D M King, A F Heeley and J A Kuzemko

Arch Dis Child 1979 54: 238-239
doi: 10.1136/adc.54.3.238

Updated information and services can be found at:
http://adc.bmj.com/content/54/3/238

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/