The differences between the two groups in all respects are insignificant. The differences between the two groups in respect of numbers of exchange transfusions per infant were analysed by means of the Wilcoxon rank-sum test. There was a difference of 24% in favour of the treated group in respect of the number of late exchange transfusions per infant, but this gives a x^2 value of 1.95 ($P > 0.01$) by this test.

One very severely affected infant in the control group (cord blood Hb 7.5 g/dl, serum bilirubin 88 μmol/l (5.5 mg/100 ml)) died during exchange transfusion. Hydrops fetalis was found at necropsy.

Discussion

The dose of sodium amytal given in this trial was small, equivalent to about 1.5 mg/kg body weight per day. Ramboer et al. (1969) gave phenobarbitone 60 mg/day from the 31st to 33rd week of pregnancy. Trolle (1968) gave phenobarbitone 50–200 mg/day for at least 8 days before delivery. There are, however, theoretical grounds for questioning the safety of larger doses of antenatal barbiturates (Wilson, 1969). We chose the smallest dose we thought likely to be effective. Possibly in a larger series the difference between the two groups in respect of late exchange transfusions might have reached statistical significance. But we ended the trial when Moller and Ebbesen (1975) reported a controlled trial of phototherapy in rhesus-haemolytic disease, since withholding phototherapy no longer seemed ethically justified. It remains probable, on the basis of the work of Trolle (1968) and of Ramboer et al. (1969), that larger doses of barbiturates given antenatally for longer periods would reduce the need for exchange transfusions in rhesus haemolytic disease.

Summary

In a double-blind controlled trial sodium amytal 100 mg was given antenatally to infants with rhesus incompatibility. The drug was given nightly for 7 days before delivery to mothers in a treated group. Placebo tablets were given to mothers in a control group. There was no significant difference between the two groups in their cord blood bilirubin levels or the number of exchange transfusions required by defined criteria. We conclude that antenatal sodium amytal, as used in this trial, is of no value in the management of rhesus haemolytic disease of the newborn.

We thank Mr M. C. K. Tweedie, senior lecturer in biostatistics at the University of Liverpool, for help with the statistics; Mr R. N. Longshaw, principal pharmacist at the West Cheshire Hospital, for assistance with the conduct of the trial; and Dr G. L. Smith, of the clinical research division of Lilley Industries Ltd., for providing the placebo tablets.

References

S. H. Towers and G. P. McMullin

Department of Obstetrics and Paediatrics, West Cheshire Hospital, Liverpool Road, Chester CH2 1BQ.

The stomach in malnutrition

Protein-energy malnutrition is one of the major health problems facing mankind. Recent reports from Central America (Mata et al., 1972), Australia (Gracey and Stone, 1972), South-East Asia (Gracey et al., 1973), and Africa (Heyworth and Brown, 1975) indicate that the contents of the upper small intestine of malnourished infants and children are contaminated with bacteria. This may contribute to the production of diarrhoea and malnutrition in these children and thus worsen their state (Gracey et al., 1975). Bacterial proliferation in the upper intestine in malnutrition may result from repeated contamination from polluted living conditions, impaired immune defence mechanisms, and a breakdown in normal intrinsic defence mechanisms in the gastrointestinal tract. Gastric acid secretion is one of these normal defences and is important in controlling the intestinal microflora (Drasar et al., 1969), but there are no reports of the adequacy of this function in malnourished infants and children. This was investigated in a group of patients in Jakarta, Indonesia.
Patients and methods

Fourteen patients were included in the study—11 girls and 3 boys whose ages ranged from 7 to 54 months. By the Wellcome Classification (*Lancet*, 1970), 7 of the 14 were undernourished, 4 had kwashiorkor, and 3 were marasmic. Specimens for serum gastrin and gastric acid secretion were obtained from 21 age- and sex-matched controls in the same hospital who had no clinical evidence of malnutrition or gastrointestinal disease. These 21 children were being intubated and having blood taken as part of a wider community health study to establish the patterns and prevalence of clinical and subclinical gastrointestinal diseases, including parasitic infestations of the upper intestine, in children in metropolitan Jakarta where nutritional problems and diarrhoeal diseases are endemic. Gastric biopsy was not performed in the control group.

After an overnight fast blood samples were taken and the stomach intubated perorally with a radiopaque, red rubber Levin’s gastric tube. Patients were swaddled and laid on their left side and their gastric contents were aspirated manually at frequent, regular intervals. Gastric juice was collected for four 15-minute periods (basal secretion) and then 6 μg/kg pentagastrin (Peptavlon, ICI, England) was given subcutaneously. Aspiration was continued for a further hour in four 15-minute periods. Volumes of individual specimens were separately measured and the HCl content estimated by titration to pH 7.4.

Specimens for biopsy were taken with a Quinton multipurpose suction paediatric tube (Quinton Instruments, Seattle, USA).

Serum gastrin levels were estimated by radioimmunoassay (*Hansky et al.*, 1971).

Results

In the control group unstimulated and stimulated gastric acid secretion did not differ from previously quoted figures (*Dodge*, 1975). Basal gastric acid output was below normal in 4 of the 7 infants and in 5 of the 7 children over one year of age.

In all the patients maximal acid output (that is, in the 60 minutes after pentagastrin stimulation) was reduced as was peak acid output, which is the highest rate of secretion in two consecutive 15-minute periods after pentagastrin stimulation (Table).

Mean serum gastrin in the control group (n=21) was 47 pg/ml and in the malnourished group (n=14) was 38 pg/ml. Using the Wilcoxon rank sum test the difference between the two groups was significant (P<0.005).

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Age (m)</th>
<th>Basal acid output</th>
<th>Maximal acid output</th>
<th>Peak acid output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>24</td>
<td>50</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>7</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>41</td>
<td>100</td>
<td>158</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>84</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>22</td>
<td>131</td>
<td>185</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>15</td>
<td>27</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>68</td>
<td>89</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>43</td>
<td>76</td>
<td>101</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>19</td>
<td>125</td>
<td>183</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>48</td>
<td>160</td>
<td>184</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>24</td>
<td>80</td>
<td>119</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>29</td>
<td>43</td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>12</td>
<td>42</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Normal range (Dodge, 1975)</td>
<td>0-12</td>
<td>34-69</td>
<td>221-293</td>
<td>280</td>
</tr>
<tr>
<td>12-60</td>
<td>37-94</td>
<td>244-258</td>
<td>411</td>
<td></td>
</tr>
</tbody>
</table>

Satisfactory specimens for biopsy were obtained from 9 patients. Paraffin sections showed all to be derived from fundal-type mucosa. One showed moderately severe chronic gastritis with some atrophy (*Rao et al.*, 1975) (Fig.), 5 had mild chronic gastritis, 2 had mild superficial gastritis, and one was normal apart from mild superficial leucocytic exudates. There were no complications.

Discussion

This study has shown that gastric acid secretion was reduced in a group of infants and young children with protein-energy malnutrition. In most patients the basal gastric acid output was low in the resting state and in all there were impaired responses to stimulation by pentagastrin.

This finding, along with the reduced gastrin levels and the presence of gastritis in most patients, suggests that impaired gastric function is an important complication of childhood malnutrition. The reduced rate of production of gastric acid probably contributes to bacterial overgrowth in the upper gut (*Mata et al.*, 1972; *Gracey and Stone*, 1972; *Gracey et al.*, 1973; *Heyworth and Brown*, 1975) by allowing large numbers of micro-organisms to escape the controlling influence of gastric acid (*Drasar et al.*, 1969) and thereby colonize the upper small bowel. Infants and children with malnutrition and diarrhoeal diseases have high bacterial counts in gastric contents (*Gracey et al.*, 1973; *Maffel and Nóbrega*, 1975) and probably this contributed to the histological abnormalities found in the present study.
showing moderately severe chronic gastritis with
(Scrimshaw et al., 1969).

This work was supported by the Wellcome Trust
and the Beecham Research Fellowship of the Royal
Australasian College of Physicians. We thank Mrs
Anne Malajczuk for her technical assistance and
Dr Jack Hansky and his colleagues for the serum
gastrin estimations.

References

Studies on the intestinal flora. I. The bacterial flora of
the gastrointestinal tract in healthy and achlorhydric persons.
Gastroenterology, 56, 71–79.
Gracey, M., and Stone, D. (1972). Small-intestinal micro-
flora in Australian Aboriginal children with chronic
diarrhoea. Australian and New Zealand Journal of Medicine,
Microbial contamination of the gut; another feature of
malnutrition. American Journal of Clinical Nutrition, 26,
1170–1174.
Gracey, M., Burke, V., Thomas, J. A., and Stone, D. E.
(1975). Effect of micro-organisms isolated from the upper
intestine of malnourished children on intestinal sugar absorption
of secretin on serum gastrin as measured by immunoassay.
Gastroenterology, 61, 62–68.
Heyworth, B., and Brown, J. (1975). Jejunal microflora in
malnourished Gambian children. Archives of Disease in
Childhood, 50, 27–33.
Lancer (1970). (Editorial.) Classification of infantile malnu-
trition. 2, 302–303.
Maffe, H. V. L., and Nóbrega, F. J. (1975). Gastric pH and
microflora of normal and diarrhoeic infants. Gut, 16, 719–
722.
Mata, L. J., Jiménez, F., Cordón, M., Roses, R., Prera, E.,
Schneider, R. E., and Viteri, F. (1972). Gastrointestinal
flora of children with protein-calorie malnutrition.
gastritis—a simple classification. Journal of Pathology,
117, 93–96.
Interactions of Nutrition and Ifection. Monograph Series

These disturbances are probably yet another mani-
fe.station of the complex synergism of infection and
nutrition so characteristic of childhood malnutrition
(Scrimshaw et al., 1969).

Summary

Basal gastric acid output was reduced in 9 out of 14
infants and young children with malnutrition com-
pared with 21 age-matched controls. In all the
patients the response of the gastric mucosa to
stimulation by pentagastrin was impaired, and
gastritis of variable severity was present in 8 out of
the 9 patients in whom biopsies were performed.
Impaired gastric acid secretion probably contributes
towards bacterial overgrowth and diarrhoeal diseases
in malnourished children.

Short reports 327

Michael Gracey,* G. J. Cullity, Suharjono, and
Sunoto

Princess Margaret Children’s Medical Research
Foundation and Princess Margaret Hospital, Perth,
Western Australia, and Department of Child Health,
University of Indonesia.

*Correspondence to Dr M. Gracey, Princess Margaret
Children’s Medical Research Foundation, GPO Box D. 184,
Perth, Western Australia.
The stomach in malnutrition.

M Gracey, G J Cullity, Suharjono and Sunoto

Arch Dis Child 1977 52: 325-327
doi: 10.1136/adc.52.4.325

Updated information and services can be found at:
http://adc.bmj.com/content/52/4/325

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/