Treatment of pneumatosis cystoides coli by oxygen inhalation

A. E. MACKINNON, J. D. FRANK,* AND P. MORRIS
From the Royal Manchester Children's Hospital, Pendlebury, Manchester

SUMMARY Endotracheal intubation and intermittent positive pressure ventilation were used to overcome the difficulties of oxygen therapy for pneumatosis cystoides coli in a 9-year-old child with Down's syndrome and a congenital heart defect. As compared to previously reported cases, a shorter duration of treatment and a lower arterial oxygen tension proved successful.

It has been known for a long time that cystic collections of gas may occur in the bowel wall of both animals and man. The first description of the condition is attributed to du Vernoi in 1730, and John Hunter described the first case in England (Koss, 1952; Kenney, 1963). In adults the gas is present in cysts measuring up to a few centimetres in diameter lying beneath either the mucosa or serosa. The condition is known as pneumatosis cystoides intestinalis or coli depending on the extent of disease process. It may be idiopathic (Koss, 1952) or associated with other diseases including pulmonary disease (Botsford and Krakower, 1938; Doub and Shea, 1960), pyelonic stenosis (Dhall et al., 1968), malignant conditions (Finney, 1908; Dale and Pearse, 1950; Williams et al., 1963; Thorpe, 1965), collagen diseases (Meihoff et al., 1968, White et al., 1970; Mueller et al., 1972), adhesions from previous surgery (Koss, 1952), and occurs after long-term administration of practolol (Thein and Asquith, 1977).

Most reports of gas within the bowel wall of children are different as the gas is present as small bubbles or linear collections (Stone et al., 1968). These are now recognized to be examples of necrotizing enterocolitis that occur mainly in the newborn (Bell et al., 1971), though a similar appearance may be found in other conditions (Robinson et al., 1974). It is suggested that the term enteropneumatosis be used to describe these collections of gas.

Four cases of pneumatosis cystoides coli have been previously recorded in children. 2 cases were in girls aged 13 and 16 years after abdominal surgery (Koss, 1952) and were associated with dermatomyositis (Mueller et al., 1972; Oliveros et al., 1973).

Case report

A girl was born in 1966 at term, weighing 2.8 kg, and with the clinical features of Down's syndrome. Chromosome analysis gave 47 chromosomes with trisomy in the 21-group. At 6 months an atrio-ventricular canal defect was diagnosed associated with pulmonary hypertension and a small left-to-right shunt. She remained reasonably well until aged 7 when she was started on digoxin on account of increasing cyanotic attacks.

At the age of 9 she presented with a 2-month history of colicky abdominal pain, loose stools with mucus and blood, and continual soiling. A polyloid mass was found on rectal examination. On sigmoidoscopy numerous gas-filled cysts were seen; several of these were biopsied and deflated with a ‘pop’. Histology of these biopsy specimens showed a giant-cell reaction in the submucosa. A plain x-ray of the abdomen and barium enema showed that cysts were present from the mid-transverse colon to the rectum (Figs. 1, 2) confirming the diagnosis of pneumatosis cystoides coli.

In spite of symptomatic treatment as an outpatient her symptoms became more severe and she was refused attendance at school because of persistent soiling. She was therefore readmitted to hospital for definitive treatment. X-ray showed the cysts to be present as before, and it was decided to use oxygen therapy as originally described by Forcacs et al. (1973). This was attempted initially using an oxygen tent and a face mask but neither was tolerated by the child in spite of sedation. It was decided to follow a colonoscopy with oxygen therapy using intermittent positive pressure ventilation (IPPV) via an endotracheal tube for 24 hours. Anaesthesia was induced with IV-thiopentone followed by pancuronium bromide and insertion of a plastic nasoendotracheal tube. Anaesthesia was maintained using a halothane-oxygen mixture with manual IPPV.

Colonoscopy confirmed the presence of cysts to within 5 cm of the anal verge (Fig. 3). The child was admitted to the intensive care unit and IPPV continued with 100% O2 using an Engstrom ventilator.

Received 4 May 1977

*Present address: The Hospital for Sick Children, Great Ormond Street, London.
set to maintain normocarbia. Control of ventilation was facilitated with intermittent doses of phenoperidine and diazepam as required. Full monitoring was carried out including blood gas analysis, initially 3-hourly. The $P_{aO_2}$ attained with an $F_{1O_2}$ of 1.0 was between 208 and 237 mmHg (27.7–31.6 kPa). 24 hours later colonoscopy showed that the cysts had deflated. The child was extubated and the post-intubation period was uneventful. Her symptoms settled immediately and she has remained well for over 6 months with normal bowel actions and no soiling. Plain x-rays of the abdomen 24 hours and 10 weeks after treatment were normal (Fig. 4). She has returned to school and leads an active life.

Discussion

The aetiology of the cysts in pneumatosis cystoides coli is not known. The association with other gastrointestinal diseases, particularly obstructive lesions, has led to the suggestion that gas from the lumen of the bowel is forced through the damaged mucosa (Koss, 1952). Coincidental pulmonary disease indicates that the gas may pass through the mediastinum to the bowel mesentery, and support for this theory has come from animal experiments (Keyting et al., 1961). However, this does not explain the formation of submucosal gas cysts whose contents are related
followed by predicted (1973) cysts creasing since section of condition (Koss, 1969). Until recently the management of the condition was unsatisfactory. Some cases have undergone spontaneous resolution (Doub and Shea, 1960; Navani, 1966; Moore, 1968) and in others resection has been followed by recurrence (Sames, 1964). Forgacs et al. (1973) predicted that by breathing a high concentration of oxygen the total tension of gases at the venous end of the capillaries would be lowered, thereby increasing the rate of diffusion of gas from the cysts (Nunn, 1969). As the cysts deflate they reach a critical diameter at which they will collapse (La Place relationship).

Since Forgacs’s original report several other cases have been successfully treated (Down and Castleden, 1975; Watson, 1976), though there have been some recurrences (Forgacs et al., 1973; Van der Linden, 1974). Administration of oxygen by a face mask or oxygen tent in an otherwise healthy child is difficult, particularly if the child is mentally retarded. When the severity of this patient’s symptoms demanded definitive treatment, and conventional methods of oxygen administration failed, it was felt that endotracheal intubation and IPPV with 100% oxygen was justified. In man pulmonary damage due to a high inspired oxygen concentration does not develop in less than 24 hours even with an FIO2 of 1.0 (Leigh, 1975). In this patient the right-to-left shunt made it impossible to achieve a Pao2 of 300 mmHg (400 kPa) as recommended by Forgacs et al. (1973).

It is interesting to note that the cysts deflated with a maximum Pao2 of 237 mmHg (31.6 kPa) and that the duration of treatment was 24 hours as compared to the 6 days used by Forgacs et al. (1973) and by Down and Castleden (1975). This method of oxygen therapy should be considered when conventional methods of oxygen administration are impossible.

We thank Mr. S. J. Cohen for permission to report this case and Professor L. A. Turnberg, Hope Hospital, University of Manchester School of Medicine, for carrying out the colonoscopy.

References


Establishing demand
echovirus encephalitis
A. R.
Oxidative metabolism
Psychological determinants
and
V.

Correspondence to Mr. A. E. Mackinnon, Royal Manchester Children's Hospital, Pendlebury, Manchester M27 1HA.

The following articles will appear in future issues of this journal:
Fetal growth in different racial groups. J. Alvear and O. G. Brooke.
Motor nerve conduction velocities in Leigh's encephalomyelopathy. A. Moosa.
Psychological determinants of infantile pyloric stenosis. Susan Revill and J. A. Dodge.
Establishing demand feeding in hospital. P. Cruse, P. Yudkin, and J. D. Baum.