Lung function in children after repair of congenital diaphragmatic hernia

Diaphragmatic hernia is an uncommon cause of respiratory distress in newborn infants but it is important because it can be corrected surgically. The problems of initial management and short-term results have been well reported. The long-term effect of the anomaly on lung development has not been clearly defined. Chatrath et al. (1971) showed reduced forced expired volume in 1 second and forced vital capacity in 14 children they studied but no other reports are available. The present study was undertaken to confirm their findings because the lung hypoplasia associated with congenital diaphragmatic hernia may interfere with the rapid lung growth and development that occurs during infancy and early childhood.

Methods

Sixteen children who had had congenital diaphragmatic herniae repaired in early childhood were reassessed clinically, radiologically, and by a series of lung function tests.

Measurements were made of peak expiratory flow rate (PFR) using a Wright's meter, forced expired volume in 0·75 seconds (FEV_{0·75}) and forced vital capacity (FVC) using a reverse plethysmograph, and thoracic gas volume (TGV) and total lung capacity (TLC) using a whole body plethysmograph. The methods and normal values are described elsewhere (Cogswell et al., 1975). Closing volumes and the slope of the alveolar nitrogen plateau (phase III) after a single breath of oxygen were measured using the method of Mansell et al. (1972). Airway closure was measured at the absolute lung volume at which closure occurred (closing capacity) and was expressed as a percentage of TLC (CC/TLC). The nitrogen single breath test (NSB) results were expressed as the rate of rise of the nitrogen percentage during the alveolar plateau. In normal children tested in this laboratory this was less than 2·17% N₂/l of expired air.

Results

The Table gives the details of the 16 children at the time of the study. The first 11 children presented at birth and were operated on by 2 days of age, except for Cases 4 and 8 who had operations on the fourth and tenth day respectively. 5 boys (Cases 12-16) presented later at from 2 to 26 months of age. All children were of normal height and weight for age. 5 children gave a history of episodes of wheeze and in 2 (Cases 3 and 10) these were still continuing at the time of study. Chest x-rays were normal in all but Case 10, who was asthmatic, and Case 11 who had a recurrence of her hernia and showed some residual pleural thickening over the left side of the diaphragm.

In general the lung function tests were within normal limits with some minor abnormalities in 6 children: 1 of these was a mild asthmatic, 3 had histories of wheezy episodes in early childhood, and 1 other had had a recurrence of her hernia. The actual abnormalities were a reduced PFR in 3 children, reduced FEV_{0·75} in 1, and abnormal NSB test in 3.

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Height (cm)</th>
<th>PFR (l/min)</th>
<th>FEV<sub>0·75</sub> (ml)</th>
<th>FVC (ml)</th>
<th>TGV (ml)</th>
<th>NSB (%N<sub>2</sub>/l)</th>
<th>CC/TLC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>9</td>
<td>133</td>
<td>230</td>
<td>1260</td>
<td>1975</td>
<td>1525</td>
<td>2·38*</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>12</td>
<td>168</td>
<td>355</td>
<td>2850</td>
<td>4050</td>
<td>2180</td>
<td>1·07</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>10</td>
<td>141</td>
<td>255</td>
<td>1500</td>
<td>2460</td>
<td>1700</td>
<td>1·86</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>11</td>
<td>144</td>
<td>240</td>
<td>2000</td>
<td>2750</td>
<td>1480</td>
<td>1·49</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>14</td>
<td>166</td>
<td>465</td>
<td>3550</td>
<td>4520</td>
<td>2560</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>8</td>
<td>122</td>
<td>150</td>
<td>825*</td>
<td>1360</td>
<td>1255</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>8</td>
<td>130</td>
<td>200</td>
<td>1400</td>
<td>1725</td>
<td>1080</td>
<td>2·73*</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>16</td>
<td>163</td>
<td>470</td>
<td>3100</td>
<td>3910</td>
<td>3110</td>
<td>0·61</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>15</td>
<td>147</td>
<td>360</td>
<td>1880</td>
<td>2320</td>
<td>1880</td>
<td>1·74</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>10</td>
<td>143</td>
<td>180*</td>
<td>1350</td>
<td>2410</td>
<td>2065</td>
<td>2·36*</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>7</td>
<td>128</td>
<td>150*</td>
<td>1140</td>
<td>1375</td>
<td>1380</td>
<td>2·17</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>8</td>
<td>130</td>
<td>295</td>
<td>1910</td>
<td>2490</td>
<td>1475</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>18</td>
<td>181</td>
<td>610</td>
<td>4325</td>
<td>5150</td>
<td>3575</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>15</td>
<td>160</td>
<td>260*</td>
<td>2500</td>
<td>2990</td>
<td>2080</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>8</td>
<td>137</td>
<td>260</td>
<td>1900</td>
<td>2200</td>
<td>1500</td>
<td>0·74</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>8</td>
<td>131</td>
<td>265</td>
<td>1240</td>
<td>1500</td>
<td>1340</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*Abnormal results for this laboratory.

See Methods for explanation of abbreviations.
Discussion

The lung function abnormalities detected in this study were minor and related to acquired lung disease rather than to the congenital diaphragmatic hernia. These results differ from those of Chatrath et al. (1971) who found moderate to severe abnormalities in 5 of their 14 subjects. It is difficult to see the reason for this disparity.

A decrease in the number of bronchial branchings is the main feature of the pulmonary hypoplasia associated with diaphragmatic hernia (Areechon and Reid, 1963). Although spirometric lung function tests tend not to detect minor changes in lung architecture, one would expect to find abnormalities in tests of small airways if such hypoplasia persisted into late childhood. Abnormalities of airways closure and the nitrogen single breath test reflect small airway disease before routine spirometry is affected, but no such changes were consistently detected in this group of patients.

Clinically, there is a wide variation in the severity of congenital diaphragmatic hernia, from those presenting as neonatal emergencies to those presenting asymptptomatically in later childhood. All degrees of severity are represented in the children from both studies so that this does not appear to be the explanation for differences between the two.

In a recent study of lung function in infants who had their herniae repaired in the first few days of life, Landau et al. (1977) showed normal lung volume (TGV), compliance, and airways conductance by 6 months of age and usually much earlier. In this laboratory similar changes were found in one infant studied throughout the first year of life. These findings indicate that the hypoplastic lungs in this condition are capable of rapid expansion with the development of normal lung function. The results of the present study show that this normal lung function persists at least into late childhood.

Summary

Sixteen children who had had congenital diaphragmatic herniae repaired either in the neonatal period (11), or in early childhood (5), were reviewed at between 7 and 19 years of age. Only minor abnormalities were shown in their chest x-rays and in a variety of lung function tests. This suggests that the long-term prognosis in this condition is good.

I am grateful to Mr. D. Waterston for permission to study children under his care, and to him and Dr. D. J. Hatch for advice.

References

A. A. Kerr
The Hospital for Sick Children, London.

Correspondence to Dr. A. A. Kerr, Hutt Hospital, P.O. Box 30314, Lower Hutt, New Zealand.
Lung function in children after repair of congenital diaphragmatic hernia.
A A Kerr

Arch Dis Child 1977 52: 902-903
doi: 10.1136/adc.52.11.902

Updated information and services can be found at:
http://adc.bmj.com/content/52/11/902

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/