Gentamicin dosage in preterm and term neonates

B. M. ASSAEL, V. GIANNI, A. MARINI, P. PENEFF, AND F. SERENI

From the Departments of Pediatrics (II) and Obstetrics and Gynaecology (Division of Neonatology), Milan University Medical School, Italy

SUMMARY Pre-dose and peak serum levels of gentamicin were measured in 82 neonates (25–42 weeks' gestational age), and for comparison in 10 infants and 9 children. Dosage was 2–2.5 mg/kg twice daily for the neonates, and three times daily for infants and children.

Neonates were subdivided according to gestational age and weight. Serum levels of gentamicin were very variable in all groups. Preterm neonates of low gestational age (25–30 weeks) showed a 66% incidence of pre-dose levels exceeding 1 µg/ml, indicating possible accumulation. In the less premature neonates this incidence was still 20–29%. The level of 4 µg/ml, the minimum concentration required to inhibit most of the bacteria sensitive to gentamicin, was reached in increasing numbers of neonates as their gestational age rose (from 30% in the 31- to 35-week gestational age group, to 60% at term); those small-for-gestational age had consistently lower levels. It is concluded that term neonates require dosage to be individualized and serum levels of the drug to be monitored.

Measurement of serum levels of gentamicin has led to improvements in its clinical use (Marks et al., 1971; Riley et al., 1971; Chang et al., 1975). In young children, however, comprehensive data on the subject are still lacking, and Taylor and Keane (1976) have emphasized that the regimens commonly suggested for children will provide an unacceptably low serum concentration of the drug in many. Fear of toxic effects may explain a reluctance to adopt higher dosages, though it is known that both term neonates and older infants need a higher dose per kg body weight than do adults (McCracken and Eichenwald, 1974). For preterm neonates data are scarce; excretion of the drug is slower, and a different kinetic may be involved (McCracken et al., 1971; Anderson et al., 1972). There are no studies relating the serum levels reached during gentamicin therapy with gestational age. Nor has the effect of intrauterine development been considered, i.e. whether the neonates are small or appropriate for gestational age. We here present the results of studies carried out on a group of infants of varying gestational ages.

Materials and methods

182 blood samples were taken from a group of 82 neonates (25–42 weeks of gestation) and for comparison from 10 older infants (1.5–8 months) and 9 children (2–4 years) hospitalized in our departments. In all cases gentamicin had been indicated for infection, either suspected or shown as being from gentamicin-sensitive Gram-negative bacteria. The dose was 2–2.5 mg/kg twice daily for the neonates, and three times daily for the others, injected intramuscularly according to the scheme suggested by Nelson and McCracken (1972). Serum levels were monitored starting from the third day of treatment using capillary blood from heel puncture. Gentamicin serum concentration was measured using the method of Grove and Randall (1955) with Bacillus subtilis as the test bacteria, which can estimate serum concentrations down to 0.25 µg/ml. In all cases both the pre-dose and peak levels were measured; from our studies and from published reports (McCacken and Jones, 1970; Echeverria et al., 1975) the latter is reached 30 to 60 minutes after intramuscular injection. The results were analysed by subdividing the neonates into four groups according to gestational age. The newborns designated small-for-gestational age (SGA) were those with a birthweight less than the 10th centile according to the standard of Gairdner and Pearson (1971). The remaining newborns were considered appropriate-for-gestational age (AGA). None of the subjects showed abnormalities of renal function as indicated by routine measurement of blood urea nitrogen and urine analysis.

Results

In Table 1 the pre-dose levels of gentamicin are given according to gestational age. Each of the 4 groups of
infants is further divided into those younger and older than 7 days' postnatal age. There were large differences between the levels found in preterm neonates of the same postnatal age. For comparison results are also given for a group of older infants and a group of 9 children.

Table 2 gives the percentage of cases where the pre-dose serum gentamicin exceeded 1 μg/ml, this concentration being considered indicative of possible accumulation. In the most premature group this occurred in 66% of all cases, or in 71% if aged less than 7 days. In the other groups of preterm neonates the incidence of a pre-dose level over 1 μg/ml was between 25 and 29%, while in the group of term neonates it depended on the postnatal age. For the older infants the incidence was 20%, while in the older children the value was never exceeded.

Values at 30 and 60 minutes after injection are given in Table 3. No data were available for neonates of less than 35 weeks' gestational age, and only a small number of neonates were older than 7 days. None of the values are significantly different between groups due to the large variation within each group. The concentration at 30 minutes was always greater than that at 60 minutes. However, as shown in Fig. 1, the percentage of cases where the peak level at 30 minutes exceeds 4 μg/ml tends to increase with increasing gestational age. In the older infants and in children, the levels of 4 μg/ml are exceeded at 30 minutes in 27% and 50% of cases, respectively.

To analyse further the difference observed between neonates we have considered whether the condition of being AGA or SGA may influence the situation (Table 4). At both 30 and 60 minutes drug levels in the AGA infants tend to be higher than those of the SGA infants. Pre-dose levels of 1 μg/ml and peak levels of 4 μg/ml are exceeded in a larger number of AGA infants as shown in Fig. 2.

Table 1 Pre-dose gentamicin serum concentrations in preterm and term neonates, infants, and children

<table>
<thead>
<tr>
<th>Gestational or postnatal age</th>
<th>Dose mg/kg (±SE)</th>
<th>Mean pre-dose values μg/ml (±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All ages</td>
<td><7 d</td>
</tr>
<tr>
<td>I 25-30 w (n = 18)</td>
<td>2.29±0.53</td>
<td>1.21±0.78</td>
</tr>
<tr>
<td>II 31-35 w (n = 19)</td>
<td>2.48±0.49</td>
<td>0.88±0.94</td>
</tr>
<tr>
<td>III 36-38 w (n = 21)</td>
<td>2.49±0.25</td>
<td>0.63±0.52</td>
</tr>
<tr>
<td>IV 38-42 w (n = 14)</td>
<td>2.39±0.38</td>
<td>0.77±0.65</td>
</tr>
<tr>
<td>V 1-5-8 m (n = 10)</td>
<td>2.30±0.52</td>
<td>0.64±0.92</td>
</tr>
<tr>
<td>VI 2-4 yr (n = 9)</td>
<td>2.36±0.27</td>
<td>0.25±0.09</td>
</tr>
</tbody>
</table>

Table 2 Percentage of cases with pre-dose gentamicin concentrations >1 μg/ml

<table>
<thead>
<tr>
<th>Gestational or postnatal age</th>
<th>All ages</th>
<th><7 d</th>
<th>>7 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-30 w (n = 18)</td>
<td>66</td>
<td>71</td>
<td>50</td>
</tr>
<tr>
<td>31-35 w (n = 19)</td>
<td>(12/18)</td>
<td>(10/14)</td>
<td>(2/4)</td>
</tr>
<tr>
<td>36-38 w (n = 21)</td>
<td>29</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>38-42 w (n = 14)</td>
<td>(6/21)</td>
<td>(2/7)</td>
<td>(4/14)</td>
</tr>
<tr>
<td>1-5-8 m (n = 10)</td>
<td>28</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>2-4 yr (n = 9)</td>
<td>(4/14)</td>
<td>(0/4)</td>
<td>(4/10)</td>
</tr>
</tbody>
</table>

Fig. 1 Per cent of neonates, infants, and older children with gentamicin serum peak levels >4 μg/ml (total number of cases in parentheses).

The serum levels we observed in neonates after intramuscular injection of gentamicin were very variable and showed little relationship between the dose administered and the peak concentration (McCracken and Jones, 1970; Riley et al., 1971;
Table 4 Gentamicin serum levels (mean \(\pm SE\) (\(\mu g/ml\)) after intramuscular administration in neonates of weight appropriate (AGA) or small-for-gestational age (SGA).

<table>
<thead>
<tr>
<th>Gestational age (w)</th>
<th>Weight (kg)</th>
<th>Pre-dose</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA 31-35</td>
<td>2294 ± 352</td>
<td>0.96 ± 0.89</td>
<td>4.56 ± 1.46</td>
<td>3.58 ± 1.35</td>
</tr>
<tr>
<td>36-38</td>
<td>2809 ± 434</td>
<td>0.58 ± 0.41</td>
<td>5.57 ± 2.81</td>
<td>3.42 ± 2.15</td>
</tr>
<tr>
<td>38-42</td>
<td>3264 ± 510</td>
<td>0.68 ± 0.60</td>
<td>5.65 ± 2.38</td>
<td>4.59 ± 1.49</td>
</tr>
<tr>
<td>SGA 31-35</td>
<td>1914 ± 394</td>
<td>0.42 ± 0.22</td>
<td>2.49 ± 1.06</td>
<td>1.56 ± 0.47</td>
</tr>
<tr>
<td>36-38</td>
<td>1781 ± 536</td>
<td>0.77 ± 0.72</td>
<td>4.55 ± 1.92</td>
<td>3.63 ± 1.68</td>
</tr>
<tr>
<td>38-42</td>
<td>2255 ± 310</td>
<td>0.45 ± 0.29</td>
<td>3.41 ± 1.19</td>
<td>3.38 ± 1.62</td>
</tr>
</tbody>
</table>

Gentamicin dosage in preterm and term neonates

The differences we found in gentamicin serum concentrations between AGA and SGA infants may depend upon the following considerations. Gentamicin is a water soluble molecule which is distributed almost exclusively in the extracellular fluids and is eliminated mainly by glomerular filtration. Relevant therefore is the decrease in extracellular fluid and the increase of glomerular filtration with gestational age. For the same gestational age AGA and SGA infants have comparable renal function (Siegel and Oh, 1976), while SGA infants have, proportionally, a larger extracellular fluid compartment (Cassady, 1970). The fact that we have consistently observed lower serum gentamicin concentrations in SGA neonates than in the AGA group at the same postnatal age may thus be attributed to a larger volume of distribution, renal function being approximately the same.

We conclude that the usual regimen of gentamicin therapy for preterm and term neonates is inadequate. In preterm neonates of less than 31 weeks' gestational age the interval between each gentamicin injection should be longer than 12 hours. On the other hand, SGA neonates may need single doses higher than 2.5 mg/kg. It is highly desirable to monitor serum levels of the drug and to individualize therapy.

This work was supported by Consiglio Nazionale delle Ricerche, Rome; Programme of Preventive Medicine sub project no. 76.00631.83.

References

886 Assael, Gianni, Marini, Peneff, and Sereni

Correspondence to Dr. B. M. Assael, Clinica Pediatrica 11° dell'Università Statale, Via della Commenda 9, Milano, Italy.

The following articles will appear in future issues of this journal:

Annotation: Measles and rubella vaccines. J. A. Dudgeon.

Rifampicin therapy in shigellosis in infancy. Y. Naveh, P. Strahovsky, and A. Friedman.

Acute pancreatitis as a complication of anaphylactoid (Henoch-Schönlein) purpura. J. A. McV. Garner.
Gentamicin dosage in preterm and term neonates.

B M Assael, V Gianni, A Marini, P Peneff and F Sereni

Arch Dis Child 1977 52: 883-886
doi: 10.1136/adc.52.11.883

Updated information and services can be found at:
http://adc.bmj.com/content/52/11/883

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/