child's illness to the familiar idiopathic diarrhoea of toddlers ('irritable bowel syndrome') is also under investigation. In such cases of unexplained diarrhoea, a therapeutic trial of aspirin may be justified.

The drug loperamide, which was also effective in our patient, antagonizes prostaglandin-induced diarrhoea in adults, and has been shown to block the smooth muscle stimulating action of prostaglandins, acetylcholine, and histamine on gastrointestinal smooth muscle preparations from several laboratory animals (Karim and Adaikan, 1977).

Summary

A child with chronic diarrhoea since birth responded to the prostaglandin synthetase inhibitors aspirin and indomethacin. During a period without treatment, raised levels of prostaglandins F₂α and E₂ were observed. No source for these raised prostaglandins was shown, and it is suggested that she may have an inborn defect of prostaglandin metabolism.

We thank Dr. S. C. Sharma for the gift of antisera to PGF₂α and PGE₂.

References


J. A. DODGE, INAAM HAMDI, and SHEILA WALKER
Department of Child Health, and Department of Obstetrics and Gynaecology, Welsh National School of Medicine, Heath Park, Cardiff CF4 4XW.

Correspondence to Dr. J. A. Dodge.

Association of fatal Coxsackie B₂ viral infection and necrotizing enterocolitis

The aetiology of necrotizing enterocolitis (NEC) is uncertain, despite much interest and research. The clinical course, pathology, and various proposed aetiologies of NEC have been extensively discussed (Stevenson et al., 1969, 1971; Virnig and Reynolds, 1974). From these reviews it seems likely that many factors play a role in the development of this disease. Although viruses have been implicated in a wide variety of other gastrointestinal diseases (Howard and Simmons, 1973), there has been little evidence that viral infection may be a causal factor in NEC. We present a case of an association between a disseminated viral infection and NEC to emphasize the possibility that viral agents may be part of the spectrum of causes of NEC.

Case report

A 3-day-old white male, weighing 2760 g, was admitted to the University of Colorado Medical Center because of suspected sepsis. Both parents suffered from a febrile illness at the time of his birth. Prominent physical findings on admission were marked abdominal distension and tenderness, bilious vomiting, bloody diarrhoea, and fever. Pneumatosis intestinale was noted on abdominal x-rays. The diagnosis of NEC was made and treatment was begun with oral and parenteral antibiotics, correction of fluid and electrolyte imbalance, and other supportive measures.

He rapidly deteriorated clinically. Exploratory laparotomy showed marked abdominal wall and retroperitoneal oedema, a moderate amount of straw-coloured ascitic fluid, and filmy adhesions about the stomach, liver, spleen, and transverse colon. Most of the ileum appeared ischaemic and cyanotic with multiple areas of subserosal haemorrhage, but there was no frankly necrotic intestine, and no bowel was resected. Therapy was resumed, including gavage-fed and intravenous antibiotics. His condition worsened and he died 30 hours later. His course before death was marked by a falling haematocrit, hypotension, cardiomegaly, and rapidly-developing bilateral pulmonary infiltrates.

Gross findings at necropsy examination showed severe bilateral haemorrhagic pneumonia, a small atrial septal defect (secundum), oedema and haemorrhage of the terminal ileum, and moderate retroperitoneal oedema. Histological examination showed pulmonary haemorrhage, areas of mucosal and subserosal intestinal haemorrhage, and evidence
of hepatic congestion with periportal oedema and venular and lymphatic dilatation. Microscopical evidence of retroperitoneal haemorrhage was present. There was no evidence of frank intestinal perforation or infarction. Bacteriological and virological data are summarized in the Table.

Discussion

The first description of neonatal NEC has been attributed to Generisch (Stevenson et al., 1971). Since then the pathophysiology and clinical course have been increasingly well defined. Several causes have been suggested (Virnig and Reynolds, 1974), including bacterial infection, Schwartzman reaction, mesenteric ischaemia due to the ‘diving reflex’, hypoxia, and complications of umbilical artery catheterization such as infection, embolism, or intestinal blood flow redistribution.

Various types of enterovirus are known to cause gastrointestinal disease. A few investigators have suggested a role for viral infection in the development of NEC. Izant (1973) mentioned an association of enterovirus and NEC. Kibrick and Benirschke (1958) reported fatal viral sepsis with Coxsackie B₂, but the gastrointestinal manifestations in their patients were minor. Lake et al. (1976) reviewed enteroviral infections at our institution and found three positive enteroviral cultures among 28 neonates with NEC. Virnig and Reynolds (1974), in a limited epidemiological study of patients with NEC, were unable to document a viral aetiology.

Our patient died from viral infection. This in itself is rare and represents the extreme end of a spectrum of illnesses resulting from enteroviral infection. It is also unusual in that there was no histological evidence of significant hepatic or cardiac involvement and less histological evidence of ischaemia and necrosis of the small bowel than might have been expected. It is uncertain whether NEC developed because of Coxsackie B₂ infection in our patient. Though the viral infection and NEC may well have been causally related, the association may have been a coincidence, or both could have been manifestations of a third factor such as immunological deficiency. Since it is still uncertain what causes NEC, further investigation of this possible aetiological factor seems warranted. Only by careful viral cultures and serological studies can the importance of viral agents in NEC be assessed.

Summary

A case of fatal Coxsackie B₂ viral infection and coexisting neonatal necrotizing enterocolitis occurred. We suggest that this virus may have a role in the development of NEC.

References


Table Viral and bacterial culture data

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Pre-mortem cultures</th>
<th>Bacterial</th>
<th>Post-mortem cultures</th>
<th>Bacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viral</td>
<td></td>
<td>Viral</td>
<td></td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>Coxsackie B₂</td>
<td>Staphylococcus epidermidis (rare)</td>
<td>Coxsackie B₂</td>
<td>—</td>
</tr>
<tr>
<td>Throat</td>
<td>Coxsackie B₂</td>
<td>Streptococcus viridans (rare)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Rectal swab</td>
<td>Coxsackie B₂</td>
<td>—</td>
<td>Coxsackie B₂</td>
<td>—</td>
</tr>
<tr>
<td>Cerebrospinal fluid</td>
<td>—</td>
<td>No β-haemolytic streptococcus</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>Coxsackie B₂</td>
<td>No growth</td>
<td>Coxsackie B₂</td>
<td>No growth</td>
</tr>
<tr>
<td>Urine</td>
<td>Coxsackie B₂</td>
<td>No growth</td>
<td>Coxsackie B₂</td>
<td>—</td>
</tr>
<tr>
<td>Peritoneal fluid</td>
<td>—</td>
<td>No growth</td>
<td>—</td>
<td>No growth</td>
</tr>
<tr>
<td>Umbilical swab</td>
<td>—</td>
<td></td>
<td>Coxsackie B₂</td>
<td>No growth</td>
</tr>
<tr>
<td>Lung</td>
<td>—</td>
<td></td>
<td>Coxsackie B₂</td>
<td>No growth</td>
</tr>
<tr>
<td>Spleen</td>
<td>—</td>
<td></td>
<td>Coxsackie B₂</td>
<td>No growth</td>
</tr>
<tr>
<td>Liver</td>
<td>—</td>
<td></td>
<td>Coxsackie B₂</td>
<td>No growth</td>
</tr>
<tr>
<td>Mesenteric nodes</td>
<td>—</td>
<td></td>
<td>Coxsackie B₂</td>
<td>—</td>
</tr>
<tr>
<td>Mother</td>
<td>Rectal swab Coxsackie B₂</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Throat</td>
<td>No growth</td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>No growth</td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>No growth</td>
<td></td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Correspondence

Significance of vesicoureteric reflux

Sir,

I was a little disturbed at the unsubstantiated conclusion made by Moncrieff and Whitelaw (Archives, 1976, 51, 893) that vesicoureteric reflux (VUR) in the absence of a complicating urinary tract infection (UTI) does not cause renal damage. Although the majority of patients with VUR come to clinical attention because of a UTI, there is now compelling evidence from radiological studies in infants and children (Rolleston et al., 1975), renal function studies in children (Aperia et al., 1976), and morphological studies in pigs (Hodson et al., 1975) that progressive renal damage may occur in the context of gross VUR. This damage may develop and progress in the continued absence of complicating UTIs. In addition, early surgery to correct gross VUR may lead to a resumption of normal renal growth despite the fact that successful antireflux surgery does not influence the incidence of subsequent UTIs (McRae et al., 1974).

Moreover if intrarenal reflux can be shown, focal renal scarring may develop in the areas of affected renal parenchyma (Rolleston et al., 1974; Uldall et al., 1976; Bourne et al., 1976). The significance of intrarenal reflux has been confirmed in studies of the pathogenesis of reflux nephropathy in the pig experimental model (Hodson et al., 1975). Infection was not an essential factor in scar formation but it did intensify the scarring process. The main conclusion from these human and animal studies is that gross VUR, and not UTI, is essential for the development of renal damage. The observation that the severity of the VUR is the single most important determining factor as to whether renal damage will occur has been the major breakthrough in the understanding of this subject in recent years (Bailey, 1973).

The recent letter in your journal by Cowen (Archives, 1977, 52, 254) should be regarded with caution. Cowen concluded that a micturating cystourethrogram was not worthwhile in the investigation of an infant with a UTI if the intravenous urogram was normal. This statement was based on a study of only 20 neonates and cannot be supported in the light of a substantial number of published reports (including, in this journal, Drew and Acton, 1976) which have shown that 50–60% of infants under the age of one year with a UTI have VUR, and more importantly that in 8–13% of these the VUR is gross in degree. In the latter patients the intravenous urogram may appear normal. I agree, however, that a micturating cystourethrogram is not indicated if a good quality intravenous urogram has been shown to be completely normal in a child under the age of 4 years.

Ross R. Bailey
Department of Renal Medicine,
Christchurch Hospital,
Christchurch 1, New Zealand.

Dr. M. Moncrieff comments:

We thank Dr. Bailey for drawing our attention to this point. In the discussion of our results we quoted Smellie and Normand (1975) who state that new renal scars 'almost invariably develop' in association with infection. We should have repeated this phrase in the summary. However, the point of our paper was that with a normal intravenous urogram (IVU) 'gross VUR' which 'is essential for the development of renal damage' is very unlikely to be present, being found in only 2 of 70 ureters in our series. Cystography is undoubtedly unpleasant and sometimes hazardous (McAlister et al., 1974), and we feel that our suggestion of deferring cystography until a second infection occurs in those with a normal IVU is the lesser of two evils.

Martin Moncrieff
Department of Paediatrics,
The Radcliffe Infirmary, Oxford OX2 6HE.

References


804 Correspondence


Frank E. Johnson, David M. Crnic, Michael A. Simmons, and John R. Lilly
Departments of Surgery and Pediatrics, University of Colorado Medical Center, Denver, Colorado, USA.

Correspondence to Dr. F. E. Johnson, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.

The age of one year with a UTI have VUR, and more importantly that in 8–13% of these the VUR is gross in degree. In the latter patients the intravenous urogram may appear normal. I agree, however, that a micturating cystourethrogram is not indicated if a good quality intravenous urogram has been shown to be completely normal in a child under the age of 4 years.

Ross R. Bailey
Department of Renal Medicine,
Christchurch Hospital,
Christchurch 1, New Zealand.

Dr. M. Moncrieff comments:

We thank Dr. Bailey for drawing our attention to this point. In the discussion of our results we quoted Smellie and Normand (1975) who state that new renal scars 'almost invariably develop' in association with infection. We should have repeated this phrase in the summary. However, the point of our paper was that with a normal intravenous urogram (IVU) 'gross VUR' which 'is essential for the development of renal damage' is very unlikely to be present, being found in only 2 of 70 ureters in our series. Cystography is undoubtedly unpleasant and sometimes hazardous (McAlister et al., 1974), and we feel that our suggestion of deferring cystography until a second infection occurs in those with a normal IVU is the lesser of two evils.

Martin Moncrieff
Department of Paediatrics,
The Radcliffe Infirmary, Oxford OX2 6HE.

References


Association of fatal Coxsackie B2 viral infection and necrotizing enterocolitis.

F E Johnson, D M Crnic, M A Simmons and J R Lilly

Arch Dis Child 1977 52: 802-804
doi: 10.1136/adc.52.10.802

Updated information and services can be found at:
http://adc.bmj.com/content/52/10/802

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/