Blue double light

Improved method of phototherapy

Phototherapy with white light reflected onto one side of the patient has reduced the number of exchange transfusions in newborn infants with rhesus haemolytic disease (Reid et al., 1972; Roth-Maintz and Schellong, 1973; Shennan, 1974; Möller and Ebbesen, 1975). Phototherapy with white light reflected onto both sides of an infant with the hope of further reducing the number of exchange transfusions necessary, and have compared the efficiency of this blue double light with traditional single white light in newborn infants with rhesus haemolytic disease.

Methods

The blue double light was arranged with 6 blue fluorescent bulbs (Westinghouse, special blue, F20T12/BB) 53 cm above and 48 cm beneath a translucent Perspex plate and an airfilled, translucent, disposable mattress (see Fig.). Conventional white light therapy was provided from a unit of 6 fluorescent bulbs (Philips TL 20W/33) 60 cm above mattress level (Möller and Ebbesen, 1975).

Phototherapy was given continuously from the first 1–3 hours of life until serum bilirubin levels fell consistently for at least one day below 204 μmol/l (11.9 mg/100 ml). Capillary blood was collected at 3- or 6-hour intervals for determination of serum bilirubin levels by a spectrophotometric method. Exchange transfusions were performed soon after birth if cord serum bilirubin levels exceeded 68 μmol/l (4.0 mg/100 ml) or cord blood Hb levels were less than 11.9 g/dl. These exchange transfusions were called early exchange transfusions and were performed within the first 12 hours of life. Exchange transfusions performed after that period were called late exchange transfusions and were carried out in all cases if serum bilirubin levels reached 340 μmol/l (20 mg/100 ml). The umbilical vein was catheterized and the infant's blood was exchanged with 170 ml/kg citrated, freshly-drawn blood. Thereafter kanamycin was administered for 3 days.

J. E. H. BRICE
Department of Child Health, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY.
Patients

Only rhesus-positive infants with strongly positive direct Coombs's test born of rhesus-negative mothers were included in the study. None of the mothers had received anti-D prophylaxis. Phenobarbitone was not administered to the mothers before birth nor to the infants after birth. Infants with Apgar scores >7 at 5 minutes after birth, and those with respiratory distress symptoms and apnoea were excluded. All patients received a conventional formula feed (Semper) at 4- to 6-hour intervals. Consent was obtained from the parents before phototherapy.

During the first 12 months of the study 42 infants (23 boys, 19 girls) were given phototherapy with white light and during the last 8 months 28 infants (16 boys, 12 girls) were treated with the blue double light regimen. The two groups were comparable as to gestational age and birthweight, and Hb and cord serum bilirubin levels in cord blood (Table).

Results

In the blue double light group 12 of the 28 infants (43%) received early exchange transfusions, and in the white light group 16 of the 42 infants (38%) received early exchange transfusions. These early exchange transfusions were regarded as 'inevitable', as it is only the number of late exchange transfusions which might be reduced by phototherapy. In the blue double light group, 25 of the 28 infants did not receive late exchange transfusion. The remaining 3 infants received 3 exchange transfusions (one each). In the white light group 25 of the 42 infants did not receive late exchange transfusion, and the remaining 17 infants received a total of 27 exchange transfusions (10 infants received one late exchange transfusion each and 7 infants two or more transfusions each). The difference between the two groups was significant (P<0.01, χ² test). All exchange transfusions were performed during the course of phototherapy, which averaged 82 hours in the blue double light group and 89 hours in the white light group.

Severe anaemia was expected to develop mainly in the infants exposed to the blue light, since fewer exchange transfusions might have led to a lessenened elimination of rhesus antibodies, but no infant required blood transfusions. Transient macular rashes were observed in 2 infants from both groups. No side effects were observed owing to the airfilled, disposable, translucent mattresses. Though it has been reported that infants treated with double light may develop fever and irritability (Healy, 1974), none did so.

Discussion

Although the immediate side effects of phototherapy were of minor importance, and long-term effects have also been considered to be slight (Behrman, 1974), the possibility of long-term effects cannot be dismissed. Therefore, intense phototherapy as provided by blue double light should only be used in infants threatened by the hazards of exchange transfusions and kernicterus.

We conclude that the blue double light arrangement may be superior to the conventional type of phototherapy in the management of infants with rhesus haemolytic disease.

| TABLE |

Comparison of neonates with rhesus haemolytic disease who received blue double light therapy and those who received conventional treatment with white light

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Blue double light</th>
<th>Conventional white light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio male/female</td>
<td>28</td>
<td>42</td>
</tr>
<tr>
<td>Birthweight (g)</td>
<td>16/12</td>
<td>23/19</td>
</tr>
<tr>
<td>Mean ± SD (P > 0.4)</td>
<td>3010 ± 410</td>
<td>3020 ± 630</td>
</tr>
<tr>
<td>Gestational age (w)</td>
<td>38.1 ± 1.5</td>
<td>37.7 ± 1.4</td>
</tr>
<tr>
<td>Mean ± SD (P > 0.2)</td>
<td>14.8 ± 5.8</td>
<td>14.5 ± 4.2</td>
</tr>
<tr>
<td>Cord blood Hb (g/dl)</td>
<td>63 ± 31</td>
<td>60 ± 27</td>
</tr>
<tr>
<td>Cord serum bilirubin (μmol/l)</td>
<td>(3.7 ± 1.8 mg/100 ml)</td>
<td>(3.5 ± 1.6 mg/100 ml)</td>
</tr>
<tr>
<td>Number of previous pregnancies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>2 (7%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>1</td>
<td>9 (32%)</td>
<td>11 (26%)</td>
</tr>
<tr>
<td>2</td>
<td>7 (25%)</td>
<td>14 (33%)</td>
</tr>
<tr>
<td>3</td>
<td>10 (36%)</td>
<td>16 (38%)</td>
</tr>
<tr>
<td>Possible ABO immunization</td>
<td>3 (11%)</td>
<td>7 (17%)</td>
</tr>
<tr>
<td>Delivery by caesarean section</td>
<td>2 (7%)</td>
<td>6 (14%)</td>
</tr>
</tbody>
</table>
Summary

In newborn infants with rhesus haemolytic disease the effect of phototherapy with blue light (28 cases) on both sides of the infant was compared with the effect of traditional white light phototherapy on one side of the infant (42 cases). The number of exchange transfusions performed after the first 12 hours of life was significantly lower in the blue double light group. It is concluded that the application of blue double light may be a superior means of applying phototherapy in rhesus haemolytic disease.

References

Finn Ebbesen and Jørn Møller*
Department of Neonatology, Rigshospitalet, University of Copenhagen, Denmark.

*Correspondence to Dr. Jørn Møller, Kronprinsessegade 40, 1306 København K., Denmark.
Blue double light. Improved method of phototherapy.

F Ebbsen and J Moller

Arch Dis Child 1976 51: 476-478
doi: 10.1136/adc.51.6.476

Updated information and services can be found at:
http://adc.bmj.com/content/51/6/476

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/