Relation between skin tests, inhalation tests, and histamine release from leucocytes and IgE in house-dust mite allergy

K. F. KERREBIJN, H. J. DEGENHART, and A. HAMMERS

From the Department of Paediatrics, Erasmus University, and Sophia Children's Hospital, Rotterdam, The Netherlands

Of the factors which play a role in triggering an asthmatic response, hypersensitivity to inhalant allergens is important. This probably consists of both a nonspecific component in which complement plays a role (Berrens, 1974), and a specific component mainly based on a type 1 sensitivity reaction (Coombs, 1968), though a type 3-like reaction may also be important (Booij-Noord et al., 1972). The reaction of allergen with antibody molecules present on the cell membranes of mast cells, basophils, and other leucocytes will produce a chain of intracellular enzyme reactions, resulting in the release of histamine and other vasoactive amines which cause obstruction of the bronchi due to swelling of the mucosa and spasm of smooth muscle tissues. However, histamine can be released in nonspecific reactions as well. The presence of specific IgE antibodies to allergens (reagins) suggests that inhalation of these allergens may result in bronchial obstruction.

There are various methods besides the skin test to detect the presence of reagins, qualitatively or quantitatively in serum (Wide, Bennich, and Johansson, 1967; Coombs et al., 1968). Bronchial obstruction occurs after provocation with allergen when the allergen-specific IgE subfractions are biologically active. This can be investigated directly by means of a test in which the allergen is inhaled through an aqueous aerosol. Three types of response can be differentiated (Van Lookeren Campagne, Knol, and de Vries, 1969). (1) Bronchial obstruction occurring during or immediately after exposure to the allergen. (2) Delayed bronchial obstruction occurring within 6–12 hours of exposure. (3) An immediate reaction followed by a delayed reaction. When allergen is added to a suspension of leucocytes from a patient with IgE antibodies to this allergen, histamine will be released (Ishizaka et al., 1969; Lichenstein, Levy and Ishizaka, 1970). Approximately 50% of this histamine comes from basophils, the other 50% from eosinophils and neutrophils (Lichenstein and Norman, 1969).

The present study was concerned with the correlation between skin test, bronchial provocation test, and histamine release from leucocytes and the serum level of total and allergen-specific IgE in patients atopic to house-dust mite allergen (Dermatophagoides pteronyssinus) as measured by an intracutaneous skin test.

Methods

Twenty asthmatic children 8–12 years of age were studied. The children were not desensitized and did not take any drugs during the investigation.
Tests and histamine release from leucocytes and IgE in house-dust mite allergy

Concentration of allergen. The water-soluble fraction of house-dust mite (*D. pteronyssinus*) allergen was prepared as follows. 500 mg mites were suspended in 250 ml 0·1 mmol/l phosphate buffer, pH 6·8, and stirred at room temperature for 2 hours. The insoluble material was removed by filtration (G-5 glass filter) and the resulting clear solution immediately lyophilized. This preparation was stored at −20°C. All allergen concentrations were freshly prepared from lyophilized material on the morning of the test and all tests were done with the same allergen solution in every subject. Blood samples, in which histamine estimations were taken, were taken on 3 consecutive days just before the provocation test.

Skin tests were performed with allergen concentrations of 1000, 100, 10, and 1 μg/ml. The initial concentration at bronchial provocation was 100 μg/ml. When this failed to induce an immediate response, the test was repeated 7 days later with 1000 μg/ml. A total of 29 provocation tests were performed in the 20 patients under investigation. Histamine release from leucocytes was measured with allergen concentrations of 1000 and 100 μg/ml.

Histamine release test. The amount of histamine released from 1 ml of a leucocyte suspension was determined after incubation with an allergen solution for 60 minutes using the method described by May, Lyman, and Alberto (1970). Total histamine content was not determined by direct butanol extraction, but by extraction after 30 minutes’ incubation in a boiling waterbath. All tests were performed in triplicate and each result is the average of three tests. The basal histamine release due to the test procedure was also determined and a correction therefore was made. As there is a linear relation between the concentration of leucocytes and the absolute histamine release, and as the concentration of leucocytes cannot be standardized, histamine release is not stated in absolute amounts but in percentages of the maximum histamine release.

Allergen-specific IgE. It was essential that a similar allergen be used in all tests. Instead of using the commercially available house-dust Phadebas kit, the concentration of allergen-specific IgE in the serum was therefore measured in the following way. The total amount of IgE was determined using the total IgE Phadebas kit. Allergen was then linked to glass pearls. After incubation of the allergen carrier complex with the patient's serum, the IgE bound to allergen was eluted with an acid buffer solution (pH 2·5). Thereafter the IgE in the eluate was estimated using the total-IgE Phadebas kit (Degenhart et al., in preparation).

Bronchial provocation. On the morning of the day before testing the vital capacity (VC) and the forced expiratory volume in one second (FEV1) were determined before and after inhalation of the solvent for 10 minutes. Pulmonary function was recorded with a Lode spirometer No. D 53. The nebulizer used was the Doppel-inhalator (made by Blümel, Wiesbaden) with an airflow of 8 l/min. Pulmonary function was determined before, immediately after and 1, 8, and 24 hours after inhalation of allergen. All provocation tests were performed during a clinically optimal period in hospital. The initial FEV1/VC value was 55% in 2 inhalation tests, 60-70% in 4, and 71% or more in 23. The provocation test was regarded as positive when the VC or FEV1 were reduced by more than 15% of the initial level, and doubtfully positive when the reduction varied from 10-15%. Bronchial hyper-reactivity (de Vries, 1970) was not measured but the histamine threshold was 8 mg/ml or more in at least 2 tests in every case.

Skin tests. These were performed intradermally on the volar surface of the forearm using four concentrations of allergen.

Results

Histamine release. The accuracy of the histamine concentration measurements was checked by carrying out 10 determinations in duplicate at each of the concentrations of 20, 30, 40, 50, and 60 μg/l. The standard deviation of the single determination was 4·5% in the 20-60 μg/l range. Table I shows the SD and the standard error of the mean in the range of a low to a marked histamine release. The reproducibility on various days was examined in 23 asthmatic children with a

Table I

Accuracy of estimations of histamine release (HR)

<table>
<thead>
<tr>
<th>Histamine release in % of maximum HR</th>
<th>No. of estimations</th>
<th>Mean histamine release in % of maximum HR</th>
<th>SD</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>30</td>
<td>5</td>
<td>3</td>
<td>0·6</td>
</tr>
<tr>
<td>10-19</td>
<td>26</td>
<td>15</td>
<td>5</td>
<td>1·0</td>
</tr>
<tr>
<td>20-29</td>
<td>20</td>
<td>26</td>
<td>4</td>
<td>0·8</td>
</tr>
<tr>
<td>30-39</td>
<td>22</td>
<td>36</td>
<td>5</td>
<td>1·0</td>
</tr>
<tr>
<td>40-49</td>
<td>36</td>
<td>45</td>
<td>5</td>
<td>0·8</td>
</tr>
<tr>
<td>50-59</td>
<td>46</td>
<td>55</td>
<td>7</td>
<td>1·0</td>
</tr>
<tr>
<td>60-69</td>
<td>40</td>
<td>65</td>
<td>6</td>
<td>1·0</td>
</tr>
<tr>
<td>≥70</td>
<td>12</td>
<td>81</td>
<td>7</td>
<td>2·2</td>
</tr>
</tbody>
</table>
positive skin test to house-dust allergen (Fig. 1.)

Though the histamine release varies on different
days, it is in the same order of magnitude in the
majority of cases, i.e. it shows either a marked
increase (≥40%), a moderate increase (20–39%),
or a slight increase (<20%). In 4 healthy controls
provocation did not result in histamine release.

\[\text{Fig. 2.- Standard curve of the IgE determination with the Phadebas-kit.} \]

\[\text{Fig. 1.- Histamine release (highest value in \% of maximal histamine release) on different days, house mite allergen (Dermatophagoides pteronyssinus). Broken lines indicate marked, moderate, or slight release.} \]

IgE. The accuracy and reproducibility of
IgE measurements can be assessed from the calibration
line in Fig. 2. This was composed of triplicate
estimations at eight different IgE concentrations.
The SD of the single determination of
IgE was calculated from 36 duplicate determinations
and is approximately 2 units/ml in the 1–200
units/ml range. In this range the SD is independent
of the IgE concentration. The linkage of IgE to allergen may be affected by factors in the

*Results of comparative studies. Tables II and III show the results obtained in 12 children
with strongly positive skin tests ('skin titre' 10 or
1 µg/ml), in 2 with moderately positive skin tests
('skin titre' 100 µg/ml) and in 6 with negative skin
tests to house mite allergen. The following is
apparent from these two tables.

1. A strongly positive intradermal skin test
(10 or 1 µg/ml) may be accompanied by marked
or by moderate histamine release on leucocyte provocation.

2. The three types of response to provocation
may be associated with strongly positive skin
tests.

3. Histamine release is low and a positive
response to provocation is absent when skin
tests are negative.

4. A good correlation exists between a positive
provocation test and high histamine release
(≥40%) and vice versa. When the provocation
test is negative, histamine release will be
low.*

5. The result of the provocation test (immediate
with or without delayed response; not
immediate but a delayed response) varies with
the concentration of allergen used.

6. An obvious relation exists between the mite-
specific and total serum IgE concentration
on the one hand and the skin titre, response to
provocation, and magnitude of the histamine
release on the other.

As the IgE level increases the skin titre will be
more strongly positive, the provocation test will
be positive more often, and histamine release will
be higher. A definite relation exists between the
concentration of specific IgE in the serum and the
skin titre. The relation between the concentration
of specific IgE in the serum and histamine
release is less marked but present. The multiple
regression coefficient is 0.88. The average
concentration of allergen-specific IgE in the serum was
1 unit/ml in normal controls.

*Statistical analysis (χ² test) shows—(a) Provocation dose 100
µg/ml: immediate response, χ² = 1.56, NS; delayed response,
χ² = 7.21, 0.10 >P>0.05. (b) Provocation dose 1000 µg/ml:
immediate response, χ² = 7.91, 0.05 >P>0.025; delayed response,
χ² = 13.16, 0.005 >P>0.001.
Tests and histamine release from leucocytes and IgE in house-dust mite allergy

Correlation of skin titre, leucocyte histamine release, provocation test, and serum IgE with house-dust mite extract (D. pteronyssinus)

TABLE II

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Lowest concentration at which skin test was positive (µg/ml)</th>
<th>Histamine* release with 100 or 1000 µg/ml in % of maximum HR</th>
<th>Provocation test 100 µg/ml</th>
<th>Provocation test 1000 µg/ml</th>
<th>IgE</th>
<th>Mite-specific†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Imme- 8 h 24 h</td>
<td>Imme- 8 h 24 h</td>
<td>Total (units/ml)</td>
<td>(units/ml)</td>
<td>% of total IgE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+ + +</td>
<td>+ + +</td>
<td>573</td>
<td>15</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>- - +</td>
<td>+ + +</td>
<td>1781</td>
<td>24</td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>69</td>
<td>+ + +</td>
<td>1061</td>
<td>13</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>60</td>
<td>+ + +</td>
<td>3990</td>
<td>36</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>59</td>
<td>+ + +</td>
<td>775</td>
<td>14</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>59</td>
<td>+ + +</td>
<td>260</td>
<td>9</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>37</td>
<td>+</td>
<td>3752</td>
<td>28</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>31</td>
<td>+</td>
<td>688</td>
<td>15</td>
<td>2.2</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>27</td>
<td>+ +</td>
<td>922</td>
<td>14</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>25</td>
<td>-</td>
<td>156</td>
<td>6</td>
<td>3.9</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>25</td>
<td>-</td>
<td>3976</td>
<td>33</td>
<td>0.8</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>17</td>
<td>+</td>
<td>2145</td>
<td>18</td>
<td>0.8</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>51</td>
<td>-</td>
<td>213</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>19</td>
<td>-</td>
<td>210</td>
<td>5</td>
<td>2.3</td>
</tr>
<tr>
<td>15</td>
<td>Neg</td>
<td>14</td>
<td>-</td>
<td>210</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Neg</td>
<td>3</td>
<td>-</td>
<td>130</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Neg</td>
<td>25</td>
<td>-</td>
<td>49</td>
<td>6</td>
<td>12.2</td>
</tr>
<tr>
<td>18</td>
<td>Neg</td>
<td>18</td>
<td>-</td>
<td>180</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Neg</td>
<td>3</td>
<td>-</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Neg</td>
<td>0</td>
<td>-</td>
<td>76</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Highest of 3 estimations.
†Average of 3 estimations on 3 consecutive days.
1 unit = approximately 2 ng.

Discussion

In the present study the relation of the results of the skin test, provocation test, and histamine release from leucocytes and serum IgE concentration (total and allergen-specific) was examined. As house dust is believed to be among the most important inhalant allergens in the Netherlands and as the house-dust mite (D. pteronyssinus) was found to contribute to a considerable extent to the allergens in house dust (Voorhorst et al., 1967), the study was primarily concerned with mite allergen, though other investigators report the correlation of diagnostic procedures with regard to house dust allergy to be inferior to those of tests for other allergens (e.g. animal danders and pollen) (Berg, Bennich, and Johansson, 1971; Aas and Johansson, 1971).

The method used here to estimate specific IgE offers several advantages over the classic radioallergosorbent test (RAST) (Johansson, Bennich, and Wide, 1968), which is at present universally available using the Phadebas house-dust kit. However, in this study the comparative studies have been done with allergen of the same batch. Moreover, coated glass pearls used as carriers are more stable and their linkage to allergen is more rapid and satisfactory than that of normal carriers. An additional advantage of our method is that the concentration of specific IgE is determined in units of weight rather than in reference serum units. In comparing various tests, the following requirements should be met. (1) A potent allergen showing the highest possible degree of purity and originating from the same batch should be used in all tests. (2) All tests should be performed at the same time. (3) The tests should be performed during optimum clinical and physiological conditions. Drugs which may affect the results, such as corticosteroids, disodium cromoglycate, antihistamines, or bronchodilators, should not be administered during the tests. It should be stated whether patients have been desensitized.

All requirements were met in the present study. The results show that a high concentration of reagins in the skin (i.e. a positive skin test with a low allergen concentration) is invariably associated with an increased serum level of specific IgE. However, testing for IgE does not appear to be more sensitive than skin testing, as observed by Hogarth Scott in a number of cases (Hogarth-
TABLE III
Correlation of provocation test, skin titre, serum IgE, and histamine release (HR) with house-dust mite extract (D. pteronyssinus)

<table>
<thead>
<tr>
<th>Lowest concentration at which skin test was positive</th>
<th>No.</th>
<th>Total IgE (units/ml)</th>
<th>Specific IgE (units/ml)</th>
<th>Provocation test</th>
<th>Histamine release (% maximum HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≥500 <500</td>
<td>≥10 1-9 0</td>
<td>Positive Doubtful* Negative</td>
<td>≥40 20-39 <20</td>
</tr>
<tr>
<td>1 or 10 100 or 1000 Negative</td>
<td>12 2 6</td>
<td>10 0 0</td>
<td>2 0 1 1 5</td>
<td>8 2 2 0 0</td>
<td>6 5 1 1 0</td>
</tr>
<tr>
<td>Provocation test</td>
<td>No.</td>
<td>Total IgE (units/ml)</td>
<td>Specific IgE (units/ml)</td>
<td>Lowest concentration at which skin test was positive (µg/ml)</td>
<td>Histamine release (% maximum HR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥500 <500</td>
<td>≥10 1-9 0</td>
<td>Positive Doubtful* Negative</td>
<td>≥40 20-39 <20</td>
</tr>
<tr>
<td>Positive Doubtful* Negative</td>
<td>8 3 9</td>
<td>7 2 7</td>
<td>1 1 1 2 5</td>
<td>8 0 0 0 0</td>
<td>6 1 1 2 0</td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td>≥10 1-9 0 0</td>
<td>10 0 0 1 5</td>
<td>7 1 2 1 0</td>
<td>5 4 1 2 0</td>
</tr>
<tr>
<td>Histamine release (% maximum HR)</td>
<td>No.</td>
<td>Total IgE (units/ml)</td>
<td>Specific IgE (units/ml)</td>
<td>Lowest concentration at which skin test was positive (µg/ml)</td>
<td>Provocation test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥500 <500</td>
<td>≥10 1-9 0 10 100 or 1000 Negative</td>
<td>Positive Doubtful* Negative</td>
<td>≥40 20-39 <20</td>
</tr>
<tr>
<td>≥40</td>
<td>7 6 7</td>
<td>5 4 1</td>
<td>2 0 5 1 5</td>
<td>6 1 0 1 0</td>
<td>6 1 1 3 6</td>
</tr>
<tr>
<td>20-39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Doubtful, i.e. provocation with 1000 µg/ml is followed by a reduction of the VC and/or FEV₁ by 10-15% within 60 minutes or by > 15% after 8 or 24 hours.
1 unit = approximately 2 ng.

Scott et al., 1973). A positive skin test or an increased serum concentration of allergen-specific IgE does not imply, however, that inhalation of allergen will result in marked histamine release or in bronchial obstruction. This agrees with the findings reported by Van Lookeren Campagne et al. (1969) and Aas (1970).

Bronchial obstruction following provocation usually occurs in the event of marked histamine release. Provocation tests may also be positive when provocation results in moderate or low histamine release. Histamine release following provocation is found to decrease as nonspecific histamine release increases (Fig. 3). If the effect of provocation is expressed by the total amount of histamine released spontaneously and after provocation, the relation between the two tests is maintained and provocation may result in bronchial obstruction while total histamine release is low.

De Vries (1970) noted that the initial pulmonary function and the histamine threshold (which may be regarded as a parameter of the degree to which the bronchi are susceptible to aspecific stimuli) are dependent upon one another. With a diminished pulmonary function the result of provocation may therefore be positive due to nonspecific factors. For this reason every provocation test was preceded by inhalation with the solvent and provocation was only performed when the result of inhalation with solvent was negative. All patients were tested during a clinically quiet period in which their pulmonary function was optimal. In all provoca-
Tests and histamine release from leucocytes and IgE in house-dust mite allergy

Physiological conditions are suitable, to be evidence of allergy, estimation of the allergen-specific IgE concentration in the serum will not offer any major advantages over the intradermal skin test (in which a 'skin titre' is determined by allergen dilutions) in determining the clinical significance of house-dust mite allergy. The skin test has the advantages that it can be rapidly and readily performed and that it is cheap. Estimation of the IgE concentration has the advantage of causing less discomfort to the patient and of being easier to perform in longitudinal studies or mass screening. When the skin titre is 10 or 1 μg/ml, or the serum specific IgE concentration is >10 units/ml (>20 ng), the provocation test will very likely be positive in approximately 80% of patients. The histamine release test is not a suitable routine procedure as it is time consuming and technically difficult, but it is a useful reference test.

The present study was undertaken with the financial support of the Health Organization TNO and the Netherlands Asthma Fund. The authors are indebted to Dr. R. Voorhorst for making available the house-dust mite allergen.

REFERENCES

Kerrebijn, Degenhart, and Hammers

Correspondence to Dr. K. F. Kerrebijn, Sophia Children's Hospital, Gordelweg 160, Rotterdam, The Netherlands.
Relation between skin tests, inhalation tests, and histamine release from leucocytes and IgE in house-dust mite allergy.
K F Kerrebijn, H J Degenhart and A Hammers

Arch Dis Child 1976 51: 252-258
doi: 10.1136/adc.51.4.252

Updated information and services can be found at:
http://adc.bmj.com/content/51/4/252

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/