Two XX males diagnosed in childhood

Endocrine, renal, and laboratory findings

BERNARD M. LAURANCE, CARYL W. DARBY*, and M. VANDERSCHUEREN-LODEWEYCKX

From Queen Elizabeth Hospital for Children, London

The Y chromosome is necessary for the development of fetal testes and male phenotype (Brøgger and Aagenaes, 1965; Ferguson-Smith, 1965, 1966). There are a few previous descriptions of phenotypic males with a 46,XX karyotype and without true hermaphroditism but very few of such children, because the diagnosis is easily overlooked. Hypoplastic genitalia is the sole feature recognizable before puberty and only later reduced sexual activity, azoospermia, and occasional gynaecomastia become apparent.

Since the original clinical description of an XX male (de la Chapelle et al., 1964) other case reports (Therkelsen, 1964; Brown et al., 1964; Bergstrand and Lindsten, 1965; the original paper by de la Chapelle et al., 1965, 1971; Strauch et al., 1965; Lindsten et al., 1966; von Mulert, Schröter, and Wolf, 1966; de Grouchy et al., 1967; Zuppiinger et al., 1967; Boczkowski et al., 1969; Freeland, 1969; Luciani et al., 1969; Mori, Mizutani, and Sonoda, 1969; Sebaoun et al., 1969; Berger et al., 1970; Bergman, Nowakowski, and Reitalu, 1970; George and Polani, 1970; Neuwirth and Raboch, 1970; Powers et al., 1970; Casperson et al., 1971; Sutherland, Wiener, and Bartholomew, 1972; Madan and Walker, 1974) and one review have followed (de la Chapelle, 1972). The incidence has been estimated at about 1 in 45,000 males (Polani, 1972), although a chromosome study of 3,500 consecutive births in Edinburgh yielded one 46,XX patient (Ratcliffe et al., 1970). The case reports have not documented renal or thyroid function or the plasma testosterone response to human chorionic gonadotrophin (HCG). The endocrine, renal, and laparotomy findings in two phenotypically male children with the 46,XX karyotype are described here.

Case reports

Case 1. This boy was referred because of bilateral undescended testes at the age of 4 years 6 months (Fig.). He had a normal-sized penis with a terminal urethra but had to sit to micturate because of severe chordee. His scrotum was poorly developed and a single, small gonad was palpable in the right inguinal canal. He was otherwise normal. A buccal smear showed 30% chromatin-positive nuclei and all were negative for Y fluorescence; the peripheral blood karyotype was that of a normal female (46,XX). At laparotomy no uterus or thickening were found but there was a rudimentary vas deferens on both sides. The bilateral intra-abdominal gonads, 1.5 cm x 0.5 cm,
Two XX males diagnosed in childhood

histologically showed small embryonic seminiferous tubules widely separated by loose connective tissue in which were scanty Leydig cells. No gonial elements were present. In the adjacent tissue there were a few tubules lined by columnar epithelium probably representing Wolffian elements. Cultures of both gonads and skin produced only cells with a 46,XX karyotype. He was reinvestigated at the age of 8 years 8 months (Table).

Case 2. This boy was referred at the age of 5 years for treatment of undescended testes. He had a hypoplastic scrotum with small gonads palpable in the inguinal canals and a normal-sized penis with a terminal urethra. There were no other abnormalities. A buccal smear showed 32% chromatin-positive cells and no Y fluorescence, and the peripheral blood chromosomes were 46,XX. At laparotomy a gonad 12 mm in length, which histologically showed infantile testicular tissue, was found in each superficial inguinal pouch. The seminiferous tubules were more mature and the Leydig cells more numerous than in Case 1. No ovarian tissue or uterus were found. No gonial elements or Wolffian derivatives were present. Culture of both gonads yielded 46,XX cells only and no Y fluorescence of the metaphase chromosomes or the interphase nuclei. Results of investigations at the age of 6 years 6 months are shown in the Table.

Discussion

These 2 patients fulfill the diagnostic criteria for XX males, since they were clinically males with bilateral histologically proved testes. True hermaphroditism is excluded. Furthermore, they lacked macroscopical or microscopical evidence of Müllerian remnants or ovarian tissue. Their leucocyte, skin, and gonadal tissue showed a consistent 46, XX pattern and no fluorescent Y body. That makes mosaicism, including XXY cells, unlikely, although it does not exclude a translocation involving only the short arm of the Y, on which is alleged to be the masculinizing (testis-determining) factor(s) (Jacobs, 1969; Angell, Gianelli, and Polani, 1970/1971; Madan and Walker, 1974).

XX males are rare and are usually undiagnosed in childhood unless there is some associated genital malformation. Out of 50 patients in whom age at diagnosis was reported only 10 were diagnosed before 15 years of age; 3 of the 10 had perineal hypospadias (de Grouchy et al., 1963; Berger et al., 1970; de la Chapelle et al., 1971; de la Chapelle, 1972), one had a large phallus and scrotum (George and Polani, 1970), one newborn diagnosed in a survey study had normal genitalia (Ratcliffe et al., 1970), but the presenting features of the remaining 5 are not recorded (de la Chapelle, 1972). Our patients were referred because of undescended testes and had no urethral abnormality. The chromatin-positive cells in their buccal smears led to chromosomal analysis. Unilateral or bilateral cryptorchidism has been reported in 8 of 44,XX males whose clinical descriptions were detailed (Brown et al., 1964; George and Polani, 1970; Ratcliffe et al., 1970; de la Chapelle, 1972; Sutherland et al., 1972), a similar incidence to that found in Klinefelter's syndrome (Frøiland, 1969).

All boys with bilateral or unilateral undescended testes should have a buccal smear studied. Laparotomy and histology of the gonads is also essential to exclude Müllerian remnants and true hermaphroditism if the palpable gonad is small for the age. In the only five laparotomies described previously no Müllerian remnants were found but in the other cases the abdomen was not explored. Histology of the testes in XX males had resembled either that of Klinefelter's syndrome (Brown et al., 1964; de la Chapelle et al., 1964; Strauch et al., 1965; Lindsten et al., 1966; de Grouchy et al., 1967; George and Polani, 1970) or rarely that of germinal cell aplasia (de Grouchy et al., 1963;
Laurance, Darby, and Vanderschueren-Lodeweyckx

TABLE

Results of chromosome, endocrine, and renal investigations in two XX males

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>8 (6/12)</td>
<td>6 (8/12)</td>
</tr>
<tr>
<td>Height (cm) (centile, male)</td>
<td>140 (>90th)</td>
<td>117 (25th)</td>
</tr>
<tr>
<td>Weight (kg) (centile, male)</td>
<td>41·5 (>97th)</td>
<td>21·5 (>25th)</td>
</tr>
<tr>
<td>Bone age (years, male)</td>
<td>11 6/12</td>
<td>7</td>
</tr>
<tr>
<td>Chromosome analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>46,XX</td>
<td>46,XX</td>
</tr>
<tr>
<td>Gonads</td>
<td>46,XX</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y fluorescence in interphase nuclei and metaphase chromosome % positive cells</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Buccal smear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xg blood grouping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td>Xg (a+)</td>
<td>Xg (a--)</td>
</tr>
<tr>
<td>Father</td>
<td>Xg (a-)</td>
<td>Xg (a+)</td>
</tr>
<tr>
<td>Mother</td>
<td>Xg (a+)</td>
<td>Xg (a-)</td>
</tr>
<tr>
<td>24-h urinary 17-oxosteroids (mg/100 ml)</td>
<td>4·7</td>
<td>2·3</td>
</tr>
<tr>
<td>11-oxygenation index</td>
<td>0·2</td>
<td>0·4</td>
</tr>
<tr>
<td>LH (IU/24 h)</td>
<td>69·9</td>
<td>159</td>
</tr>
<tr>
<td>FSH (IU/24 h)</td>
<td>2·1</td>
<td>3·4</td>
</tr>
<tr>
<td>HCG test (dose 5 × 1000 IU/day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma testosterone (ng/100 ml) before test</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>after 3 doses</td>
<td>37</td>
<td>58</td>
</tr>
<tr>
<td>after 5 doses</td>
<td>85</td>
<td>95</td>
</tr>
<tr>
<td>TRH test (dose 0·2 mg intravenous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma TSH (μU/ml) before test</td>
<td><0·5</td>
<td>2</td>
</tr>
<tr>
<td>after 20 min</td>
<td>18·1</td>
<td>10</td>
</tr>
<tr>
<td>after 60 min</td>
<td>6·3</td>
<td>8·1</td>
</tr>
<tr>
<td>Intravenous pyelogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>Duplex pelvicalyceal system with single ureter</td>
<td>Normal</td>
</tr>
<tr>
<td>Right</td>
<td>Normal</td>
<td>Duplex pelvicalyceal system with duplicated ureter</td>
</tr>
</tbody>
</table>

LH = luteinizing hormone (upper normal limits for age 5 IU/24 h (Buckler and Clayton, 1970); FSH = follicle stimulating hormone; HCG = human chorionic gonadotrophin; TRH = thyrotrophic releasing hormone; TSH = thyroid stimulating hormone.

Lindsten et al., 1966; Luciani et al., 1969; Berger et al., 1970) but more commonly an intermediate histological appearance has been found (de la Chapelle et al., 1964, 1971; Therkelsen, 1964; Lindsten et al., 1966; Boczkowski et al., 1969). Scanty Leydig cells were present in only one of our patients but both had infantile seminiferous tubules separated by loose connective tissue. No Leydig cells were found in two previously reported prepubertal children (Berger et al., 1970; de la Chapelle et al., 1971) but they were hyperplastic in several postpubertal patients (de la Chapelle et al., 1964, 1971; Therkelsen, 1964; Strauch et al., 1965; Lindsten et al., 1966; von Mulert et al., 1966). Spermatogenesis is usually absent in adult XX males, though occasional spermatogonia were seen in one 15-year-old boy (de Grouchy et al., 1967).

In the only reports of short-term stimulation with HCG there was no rise of testosterone in the urine of one adult or in the plasma of another (Sebaoun et al., 1969). Our patients had a significant but subnormal increase in plasma testosterone. This indicates reduced Leydig cell activity and may explain the inadequate secondary sex characteristics of adult XX males. Although our patients were clinically prepubertal both had raised urinary gonadotrophins and in Case 1 the bone age was advanced, for which we have no explanation.

A previous report (Lindsten et al., 1966) suggested a decreased thyroid stimulating hormone (TSH) reserve in XX males but our patients had a normal TSH response to intravenous synthetic thyroid releasing hormone, providing direct evidence of normal pituitary TSH reserve.

Intravenous pyelograms were normal in 10 out of the 11 previously reported patients (de la Chapelle et al., 1964, 1965, 1971; Lindsten et al., 1966; von Mulert et al., 1966; de Grouchy et al., 1967; Berger et al., 1970), the exception being a 24-year-old XX male with uraemia due to an atrophic right kidney (Powers et al., 1970). Pyelograms in both our cases showed a unilateral duplex pelvicalyceal system with a single ureter in Case 1. In neither case was there a history of urinary symptoms or
Two XX males diagnosed in childhood

infection. Duplications of the pyelon are commoner in girls than in boys (James, 1972).

Several hypotheses have been postulated to explain this condition (Hungerford, Donnelly, and Nowell, 1964; Ferguson-Smith, 1966; Sanger Tippett, and Gavin, 1971; de la Chapelle et al., 1971; Bartsch-Sandhoff, 1974). Mosaicism is unlikely since a large number of cells from various sites showed 46,XX cells only. The findings of fluorescence studies also make mosaicism unlikely. The same can be said for translocations of the terminal portion of the Y (Polani and Mutton, 1971), though, since Y fluorescence in the biological father was unknown this cannot be quite certain. In any event, this would be irrelevant to male determination if the masculinizing factors were elsewhere on the Y chromosome. The Xg blood group findings are informative only in Case 2 and then only on the assumption that the ‘father’ was indeed the biological one. If he was, translocation is one possibility. In this event it would have to have been from the Y chromosome to the X with loss of the Xg locus in the course of the exchange. The loss of this locus would give the appearance that both Xs were maternal though one was paternal and carried the father’s masculinizing factors from the Y in lieu of the Xg locus. Possibly also XX males may arise from XXX zygotes if the Y becomes lost after initiating male development (Sanger et al., 1971), but not necessarily so. The Xg blood groups in Case 1 were unhelpful in this respect.

We gratefully acknowledge the help of Mr. L. Butler (cytogenetics); Mr. L. H. Clifford (photographs); Mr. K. Evans (thyroid hormone studies); Dr. N. E. France (histology); Mrs. D. Fry (secretary); Dr. S. Lewis, who referred Case 2; Mrs. J. Ryness (plasma testosterone); Dr. R. Sanger (Xg blood groups); Dr. D. G. Shaw (radiology); and Mr. V. J. Swain (surgery). Professor P. E. Polani kindly commented on the draft manuscript. M.V.L. was supported by ‘Aangesteld Navorser’ of the Belgium ‘National Fonds voor Wetenschappelijk onderzoek’ and was a British Council Scholar.

References

James, A. A. (1972). Renal Disease in Childhood, 2nd ed. Mosby, St. Louis.
Laurance, Darby, and Vanderschueren-Lodeweyckx

Correspondence to Dr. B. M. Laurance, Queen Elizabeth Hospital for Children, London E2 8PS.

Addendum

Since this article was submitted for publication preliminary communications by Wachtel et al. (1975) and Bennett et al. (1975) support the hypothesis that the presumptive testis-determining gene(s) which resides either on the short arm or on a pericentric region of the acrocentric human Y chromosome produces an H-Y (histocompatibility—Y) antigen. The cells of certain XX human males have been shown to express this antigen, which suggests that the testis-determining gene and the H-Y locus are extremely closely linked and may indeed be identical. It is possible that the locus of the H-Y antigen normally present on the Y chromosome is transposed to an autosome in some XX males.

References

Two XX males diagnosed in childhood. Endocrine, renal, and laboratory findings.
B M Laurance, C W Darby and M Vanderschueren-Lodeweyckx

Arch Dis Child 1976 51: 144-148
doi: 10.1136/adc.51.2.144

Updated information and services can be found at:
http://adc.bmj.com/content/51/2/144

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/51/5/384.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
We thank the staff of the Labour Ward, West Wing, and Paediatric Department of the Queen Mother's Hospital for help during the course of the trial, in particular, Miss S. Finlayson, Miss J. Young, and Miss M. Turner; and also thank Cow and Gate for providing the V Formula used in the study.

REFERENCES

Correspondence to Dr. G. T. Lealman, Department of Paediatrics and Child Health, University of Leeds, 27 Blundell St., Leeds LS1 3ET.

Corrigendum: In the Table on p. 146 of the article 'Two XX males diagnosed in childhood' by Laurance et al., *Archives, 1976, 81*, p. 144. the Xg group of the mother of Case 2 should read 'Xg (a+)'.