Perinatal cardiac arrest

Quality of the survivors

HANS STEINER and GERALD NELIGAN

From Princess Mary Maternity Hospital, Newcastle upon Tyne

Perinatal cardiac arrest: quality of the survivors. Twenty-two consecutive survivors of perinatal cardiac arrest have been followed to a mean age of 42 years, using methods of neurological and developmental assessment appropriate to their ages. Four showed evidence of gross, diffuse brain-damage (2 of these died before the age of 3 years). These were the only 4 survivors of the first month of life who took more than 30 minutes to establish regular, active respiration after their heartbeat had been restored. The arrest in these cases had occurred during or within 15 minutes of delivery, and followed antepartum haemorrhage, breech delivery, or prolapsed cord. The remaining 18 were free of any evidence of brain damage. In the majority of these the arrest had occurred during shoulder dystocia or exchange transfusion, or was unexplained; the heartbeat had been restored within 5 minutes in most cases, and regular, active respiration had been established within 30 minutes thereafter in all cases.

To succeed in bringing a fellow human being back from the dead is a most exciting and gratifying clinical experience. But the immediate sense of achievement is often rapidly succeeded by a vague fear that the quality of the life which has been restored may have been irrevocably impaired by brain damage due either to the period of circulatory arrest which presumably accompanied the clinical cardiac arrest, or to the primary cause of the cardiac arrest itself. This emergency is particularly likely to occur during or soon after birth, and there are two good reasons for believing that the chances of completely successful treatment should be better in the newborn baby than in later life. Firstly, the mechanisms which enable the term fetus and newborn of many mammalian species to survive a much more prolonged period of asphyxia than the adult include the ability of the central nervous system to survive a more prolonged period of circulatory arrest (Dawes, 1968). Secondly, the chest wall of the newborn is so soft and pliable that external cardiac massage, when indicated, can be performed promptly and efficiently (Moya et al., 1962). Furthermore, nearly all cases of perinatal cardiac arrest in this country now occur in a clinical context where optimal methods of resuscitation should be immediately available.

Sporadic reports of cases of successful external cardiac massage in the neonatal period, with some information concerning the subsequent progress of the babies concerned, have appeared during the past 12 years (Moya et al., 1962; Surks and Ladner, 1962; Gallagher and Neligan, 1962; Mathews, Avery, and Jude, 1963; Hey and Kelly, 1968). But we have seen no report of any series of cases which makes it possible to assess the prognosis realistically.

We have followed 22 babies who had been successfully resuscitated after perinatal cardiac arrest, and had survived the neonatal period, to an age when their neurological and developmental status could be satisfactorily assessed. The findings and the conclusions we have drawn from them form the basis of this report.

Material and methods

During the 9 years between mid-1961 and mid-1970 a serious attempt was made to resuscitate 39 babies born in this hospital whose heart beat could not be heard by at least one experienced observer either immediately after birth (14 cases of fresh stillbirth), or within the first 15 minutes (11 cases of cardiac arrest in the labour

Received 22 January 1975.
Perinatal cardiac arrest

ward), or later during the first week of life (14 cases of early neonatal cardiac arrest). All the babies were free of external evidence of congenital malformation, and most were at or beyond term. The immediate results of the resuscitation attempts are summarized in Table I. Those recorded as showing 'no response' did not regain an audible and effective heartbeat; those who died in the first week had regained an effective heartbeat and active respirations and death was attributed to adrenal or intracranial haemorrhage in 3 cases, with evidence of severe kidney damage in some cases. Treatment of the cardiac arrest was the responsibility of members of the hospital's paediatric staff, one or more of whom was present or immediately available in every case, and was carried out in accordance with an agreed procedure which did not vary in essentials, but did vary in detail, during the 9-year period.

Essentials. (1) Tracheal intubation using a moulded rubber tube of 2-5, 3-0 or 3-5 mm external diameter, as soon as clinical cardiac arrest was confirmed (in some of the cardiac arrests in the labour ward the baby had already been intubated before arrest occurred). Positive pressure ventilation using pure oxygen at a pressure of up to 30 cm water, by occluding the Y-piece of water manometer circuit of Resuscitare trolley (or prototype) for a few puffs. Then (2) Sternal compression, towards vertebral column, at a rate of about 60/min (pausing every 10-15 s to allow a single inflation of the lungs, and every minute or so to allow auscultation of the heart). Cardiac massage was continued for 15 minutes routinely before accepting defeat. In 8 of the ultimate survivors no other form of treatment (see details below) was used: 7 are completely normal.

Details. (1) Intracardiac injections were given by needle passed through an intercostal space to the left of the sternum into a cardiac cavity (checked by withdrawal of blood) if the heartbeat did not return within about 4 minutes. During the earlier years, 0-5-1·0 ml nikethamide was given, but latterly a similar volume of 8·4% sodium bicarbonate solution has been used instead.

(2) The umbilical vein was catheterized as soon as possible, depending upon the availability of an assistant, for administration of a maintenance infusion of 10% dextrose solution, in many cases. From about 1965 onwards the infusion has been preceded by injection of a bolus of 5-10 ml 8·4% sodium bicarbonate solution (the exact volume depending upon an estimate of the baby's weight, where this is not accurately known, and the duration of the arrest). The risks of this procedure appear to be justified by the severity of the problem (Behman, 1966). After an interval the baby's blood has been checked to determine if the anticipated metabolic acidosis has been adequately corrected.

Follow-up of the 22 survivors of the first month of life has been the responsibility of one of us (H.S.). Information about their subsequent progress is available for all 22 children, 18 (82%) as a result of one or more personal examinations, to a mean age of 4 years (range 5-98 m) at the time of the latest examination. The examination included the Denver Developmental Screening test (Frankenburg and Dodds, 1967); a standard neurological examination; specific examination of the motor system described by Milani-Comparretti and Gidoni (1967); the Sycar test of hearing (Sheridan, 1958) and vision (Sheridan, 1960); the Draw-a Man IQ (Goodenough, 1926). All these tests were used as the children reached appropriate ages and 5 of the eldest were also assessed by a clinical psychologist, using the Wechsler Intelligence Scale for children (1949) or the Preschool and Primary Scale of Intelligence (1967). We feel that these methods of assessment should have detected all moderate and severe handicaps, but clearly a more prolonged period of observation will be necessary to look for minor neurological handicaps and learning difficulties (Steiner, 1974). In the 4 cases (18%) who were not accessible for these examinations, information was obtained from paediatricians who looked after them up to the time of their early death (2 cases), or in a residential institution (1 case), or following adoption (1 case).

Results

In Table II we have summarized the findings at follow-up, together with the clinical data, for the individual babies. They are not in chronological order but in groups corresponding to the clinical subdivisions used for presenting the immediate results, in terms of survival, in Table I. Table II

TABLE I

Immediate results of 39 consecutive attempts to resuscitate cases of perinatal cardiac arrest in Princess Mary Maternity Hospital, 1961-1970

<table>
<thead>
<tr>
<th>Timing of cardiac arrest</th>
<th>Group</th>
<th>Total no.</th>
<th>Outcome</th>
<th>No response</th>
<th>Died first week</th>
<th>Survived</th>
</tr>
</thead>
<tbody>
<tr>
<td>During delivery</td>
<td>A</td>
<td>14</td>
<td></td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>First 15 min</td>
<td>B</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During exchange transfusion</td>
<td>C</td>
<td>11</td>
<td></td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>During 1st week, unexplained</td>
<td>D</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Total no.</td>
<td></td>
<td>39</td>
<td></td>
<td>6 (15%)</td>
<td>11 (28%)</td>
<td>22 (56%)</td>
</tr>
</tbody>
</table>
Table I

Summary of clinical data concerning 22 consecutive survivors

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Obstetric problems</th>
<th>Birthweight (kg) and/or gestational age (w)</th>
<th>Cardiac arrest (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A: fresh stillbirths</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Shoulder dystocia</td>
<td>3600 g</td>
<td>3+</td>
</tr>
<tr>
<td>2</td>
<td>Breech</td>
<td>3420 g</td>
<td>4+</td>
</tr>
<tr>
<td>3</td>
<td>Prolapsed cord; caesarean section; fetal distress</td>
<td>43 w</td>
<td>6+</td>
</tr>
<tr>
<td>4</td>
<td>Shoulder dystocia</td>
<td>4650 g</td>
<td>3+</td>
</tr>
<tr>
<td>5</td>
<td>Shoulder dystocia</td>
<td>4700 g</td>
<td>15+</td>
</tr>
<tr>
<td>6</td>
<td>Shoulder dystocia</td>
<td>5050 g</td>
<td>10+</td>
</tr>
<tr>
<td>Group B: CA in labour ward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Primigravida aged 44 yr; caesarean section</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Shoulder dystocia</td>
<td>3800 g</td>
<td>2+</td>
</tr>
<tr>
<td>9</td>
<td>Breech; fetal distress; APH</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Severe fetal distress; failed forceps; caesarean section</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2050 g</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Severe APH</td>
<td>42 w</td>
<td>6+</td>
</tr>
<tr>
<td>13</td>
<td>IUT x 1; caesarean section for failed induction</td>
<td>33 w</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>Severe APH; fetal distress</td>
<td>1960 g</td>
<td>10</td>
</tr>
<tr>
<td>Group C: CA during exchange transfusion (ET)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cord Hb 108%</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>IUT x 4; cord Hb 85%</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Cord Hb 87%</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Severe APH; cord Hb 91%</td>
<td>1230 g</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Cord Hb 70%</td>
<td>34 w</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>Cord Hb 43%</td>
<td>35 w</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>Cord Hb 78%</td>
<td>35 w</td>
<td>6</td>
</tr>
<tr>
<td>Group D: CA in first day: unexplained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Severe APH; caesarean section; asphyxia (IPPV for 8 min)</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

*Following return of heart-beat.
APH, antepartum haemorrhage; IUT, intrauterine transfusion; NDN, normal development and neurology; WISC, Wechsler Intelligence Scale for Children; WPPSI, Wechsler Preschool and Primary Scale of Intelligence; IPPV, intermittent positive pressure ventilation; Good enough Draw-a-Man Test.

Gives a rough picture of the clinical background and outcome in each baby, and permits simple groupings which may be of interest. We hope to tabulate some such groupings from which we believe that practical conclusions can be drawn.

Probable causes of cardiac arrest. We have attempted to determine the cause in each case in terms of the known antecedent clinical factors; and then to determine the prognosis for the survivors following each type of cause. We have summarized these results in Table III. Groups A and B have been combined because, whether the actual cardiac arrest occurred just before or just after delivery, the ultimate causes are likely to be the same (and Table II shows that there is about the same risk of severe brain damage in the 2 groups). The cause of cardiac arrest during exchange...
Perinatal cardiac arrest

<table>
<thead>
<tr>
<th>Regular respirations (min)</th>
<th>Neonatal complications</th>
<th>Follow-up</th>
<th>Age (yr)</th>
<th>findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>—</td>
<td>6½</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Apathy; fits; irritability</td>
<td>4</td>
<td>Quadriplegic; mentally subnormal</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Irritability; fits; tetany</td>
<td>4</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Irritability; fits</td>
<td>4</td>
<td>NDN; WPPSI 78</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Irritability; fits; tetany</td>
<td>2½</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Irritability</td>
<td>1</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>8</td>
<td>NDN; WISC 103</td>
<td></td>
</tr>
<tr>
<td>2½</td>
<td>Erb’s palsy</td>
<td>5</td>
<td>NDN; WPPSI 109</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>5</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Irritable 12 h</td>
<td>3½</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Irritable 24 h; fits; tetany</td>
<td>3</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Fits; tetany</td>
<td>2</td>
<td>Died; quadriplegic defective</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ET × 3</td>
<td>1½</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>32 +</td>
<td>Apathy; irritability; fits</td>
<td>1½</td>
<td>Died; quadriplegic, defective</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ET × 1</td>
<td>8</td>
<td>NDN; WISC 106</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ET × 3</td>
<td>7</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ET × 2</td>
<td>6</td>
<td>NDN; Goodenough 95</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>ET × 2</td>
<td>5</td>
<td>NDN; WPPSI 84</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ET × 4</td>
<td>3½</td>
<td>NDN; deafness</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ET × 2</td>
<td>3</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ET × 2</td>
<td>1½</td>
<td>NDN</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CA at 13 h</td>
<td>5</td>
<td>NDN; Goodenough 95</td>
<td></td>
</tr>
</tbody>
</table>

Transfusion in the 7 babies who survived is not known with certainty. We have attributed it to 'biochemical or physical' causes because these were not particularly severe cases of haemolytic disease (in contrast to the 4 cases shown in Table I who failed to survive), and we suspect that the heart was affected either by reversible biochemical abnormalities (e.g. a high level of potassium or citrate), or a fall in temperature in the baby’s blood (before we adopted the routine practice of passing the donor blood through a warming coil in a thermostatically controlled water bath). The harmful effects of using cold blood were described by Hey, Kohlinsky, and O’Connell (1963).

It is clear that all the instances of severe handicap followed a perinatal cardiac arrest, but that all 5 babies in whom this was attributed to shoulder dystocia escaped unscathed, showing normal neuro-
TABLE III

Probable causes of cardiac arrest, and quality of survivors

<table>
<thead>
<tr>
<th>Group*</th>
<th>Probable cause of cardiac arrest</th>
<th>No. of survivors</th>
<th>Findings at follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>A + B</td>
<td>Shoulder dystocia</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Antepartum haemorrhage</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Breech delivery</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Prolapsed cord</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe fetal distress</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>None known</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>?Biochemical or physical</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>None known</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>17 (77%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

*See Table I.

logy and development (at a mean age of 45 months). This finding is consistent with some published case reports (Epple and Sutherland, 1959; Leake, 1959; Mathews et al., 1963), and with the expectation that the chances of recovery should be better after a 'catastrophic event' than when cardiac arrest has been preceded by a more or less prolonged period of progressive anoxia and respiratory or metabolic acidosis (Lancet, 1972). The relatively high risk of brain damage in the children whose arrest was attributed to antepartum haemorrhage, breech delivery, and prolapsed cord is also consistent with this expectation.

The only neurological deficit found in the 8 cases where cardiac arrest occurred later than the first 15 minutes after delivery was deafness (high-tone) in a child whose arrest occurred during his first exchange transfusion, at the age of 45 minutes, and whose unconjugated plasma bilirubin level later rose to a level of 22 mg/100 ml at the age of 38 hours.

Duration of cardiac arrest. This was judged by the time which elapsed until the heartbeat could be heard. In group A cases this must have been appreciably longer than the time recorded, which was the elapsed time between completion of delivery and return of the heartbeat. In several instances where the heartbeat returned within 1 or 2 minutes of starting external massage it was noted as being initially very strong, so that it could easily be felt, or seen, as well as heard. The findings summarized in Table IV do suggest, as might be expected, that longer duration of arrest is associated with a higher incidence of brain damage (this was only too obvious in 3 of the 8 survivors of cardiac arrest which lasted more than 5 minutes). However, this relation does not appear to be strong enough to act as the basis of a clinical policy of withholding treatment, since even following an arrest of 10–15 minutes' duration, the majority of the survivors developed quite normally, and only one of the 5 was brain-damaged.

Delay in establishing regular active respiration. After the return of the heartbeat (which presumably indicates that an effective circulation has been re-established), this could indicate relatively severe brain damage, specifically affecting the respiratory centre in the midbrain, but possibly more widespread. The relation between the duration of this delay, and the risk of severe, irreversible, and widespread brain damage are summarized in Table V. It is clear that this relation is very strong, and the fact that no baby who took more

TABLE IV

Duration of cardiac arrest, and quality of survivors

<table>
<thead>
<tr>
<th>Duration of cardiac arrest (min)</th>
<th>No. of survivors</th>
<th>Findings at follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>1 or less</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2–5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6–9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10–15</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Perinatal cardiac arrest

Delay in establishing regular, active respiration, and quality of survivors

<table>
<thead>
<tr>
<th>Delay in regular aspiration after return of heartbeat (min)</th>
<th>No. of survivors</th>
<th>Findings at follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–15</td>
<td>20</td>
<td>Normal 19</td>
</tr>
<tr>
<td>16–28</td>
<td>3</td>
<td>Quadruplegic 3</td>
</tr>
<tr>
<td>32 or more</td>
<td>4</td>
<td>Deaf 1</td>
</tr>
</tbody>
</table>

than 30 minutes to start regular breathing after the return of the heartbeat later developed normally could be regarded as a contraindication to further active resuscitation when this point has been reached. The dividing line may appear to be narrow, but the degree of handicap in the 4 survivors was so gross that we have felt justified in incorporating this contraindication into our routine policy of management, so answering the difficult question posed by Cockburn (1971), of 'when to stop ventilating the infant who fails to sustain regular respirations but who maintains a good colour and regular heartbeat ...'. A further finding which strengthens the validity of this concept, that a delay of more than 30 minutes in establishing regular, active respiration after the return of the heartbeat is a grave prognostic sign, is that 5 of the 7 cases in groups A and B who failed to survive the first week of life had also experienced such a delay (range 42–69 min).

Discussion

The routine availability of more effective methods of resuscitation could be expected to save the lives of some newborn babies who would otherwise have died simply because they failed to make the dramatic physiological adjustments which are necessary after the birth of any mammal. This expectation appears to have been justified in the case of intermittent positive pressure ventilation (Neligan, Prudham, and Steiner, 1974), which is the first requirement in treating cardiac arrest, since this is almost always preceded, and always accompanied, by respiratory arrest. The addition of an efficient and safe method of dealing with cardiac arrest, by closed-chest massage, presumably further increased the chance of saving lives, even though the absolute numbers involved might be quite small. In fact our 22 survivors of cardiac arrest are derived from a total population of 20,793 babies who were born in our hospital during the period covered by this report (a rate of little more than 1/1000 live births), and for much of this period there was a policy of selective admission of mothers with obstetric problems, and for all of it of mothers suffering from Rhesus isoimmunization. The latter fact partly explains the large number of 7 cases in which cardiac arrest occurred during exchange transfusion. This procedure was performed some 2009 times in our hospital during the 9 years.

On the other hand, the effectiveness of the more efficient methods does appear to introduce an increased risk that brain-damaged individuals will survive, who would otherwise have died quickly. The vague fear of this possibility was mentioned in our opening paragraph. We hope that our findings enable us to be more precise, not only about the magnitude and characteristics of this risk, but also about the more positive aspects of the quality of the survivors.

It is true that the overall results summarized in Table III show that nearly 20% of the survivors were brain-damaged, and that the severity of the disability in the 4 children concerned was such that the early deaths of 2 of them could only be regarded as merciful, both for them and for their families. But the other side of the coin is represented by the fact that we found no evidence of any degree of brain damage, or of any attributable handicap, in the other 18 children (if we accept that the case of high-tone deafness was more likely attributable to the bilirubin level of 22 mg/100 ml). Clearly this optimistic finding needs to be confirmed by more prolonged and more searching assessment of these children at later ages, but the nature of the evidence we have already obtained seems to us to justify a positive approach to the treatment of this emergency in general, combined with a specific search for a clinical policy which will enable us to avoid survival of the brain-damaged minority.

Certain antecedent factors appear to have a good prognosis: in particular, the abrupt physiological or physical insults which presumably cause cardiac arrest in cases of shoulder dystocia or during exchange transfusion. Even when the antecedent factor is less favourable, as in the case of antepartum, haemorrhage, prolapsed cord, or breech delivery, it is worthwhile acting as rapidly and efficiently as
possible, once the occurrence of cardiac arrest has been established by an experienced observer. If the heartbeat is back within 5 minutes, and the baby is breathing regularly and spontaneously within 30 minutes thereafter, the prognosis still appears to be uniformly good. In our experience at least, the only situation which need cause real concern about the possibility of permanent brain damage, is when active, regular respiration has not been established within 30 minutes after the return of the heartbeat (which is unlikely unless the cardiac arrest has lasted more than 5 minutes). In that case, as we mentioned in our results, we no longer regard it as justifiable to persist with resuscitative measures, in view of the uniformly very bad prognosis. Of 9 such babies who responded initially, 5 died before the age of 1 week and the 4 who survived the neonatal period were all quadruplegic and grossly mentally defective. We believe it is right to describe this fate as 'worse than death' (Lancet, 1974).

Our findings appear to confirm that the treatment of cardiac arrest is particularly worthwhile during the early neonatal period, and that by using certain simple clinical criteria for withholding further treatment in a few cases, it may be possible to reduce the proportion of brain-damaged survivors to well below the figure of nearly 20% which we have reported.

We are grateful to many colleagues on the paediatric staff of this hospital whose prompt action and accurate records have made this report possible.

REFERENCES

Lancet (1972). (Leading article.) Limitations of resuscitation, 1, 1169.

Correspondence to Dr. G. A. Neligan, Princess Mary Maternity Hospital, Great North Road, Newcastle upon Tyne NE2 3BD.