Fused adrenal glands. A. A. M. Gibson. Department of Pathology, Royal Hospital for Sick Children, Glasgow G3 8SJ.

Fusion of two adrenal glands is a rare congenital anomaly. In the past 3 years, however, 10 cases of fused adrenals were observed at necropsy; only 2 other cases were found in the previous 17 years. In this series there was a constant association with spina bifida and meningomyelocele, the number of these cases being only 50% greater in each of the later 3 years compared with the earlier period (a total of 199 cases in 20 years). There was also a striking association with primary renal anomalies, such as unilateral renal agenesis (4 cases) and fused kidneys (3 cases), which occurred in 58% of cases with fused adrenals compared with 5% in control cases of spina bifida and meningomyelocele with normal adrenals and with 1% in all other necropsies. There was no significant difference in the level or the extent of the spinal defect between those with fused and those with normal adrenals, but there was a significant increase in severe kyphoscoliosis in cases with fused adrenals. Fused adrenals in the context of spina bifida are regarded as an indication of the severity of the teratogenic insult. The high incidence of such severe cases in recent years remains unexplained.

The fused glands were joined in the midline, usually behind the aorta, giving a butterfly outline and the histological structure was normal.


Evaluation of the histological changes found in kidney biopsies obtained during the investigation of children with renal disease is complicated by the fact that in many instances the abnormalities seen by light microscopy are slight or absent, and may be prone to subjective errors of interpretation.

In this study a number of percutaneous renal biopsies taken from 59 children who presented with a nephrotic syndrome, 24 children with idiopathic recurrent haematuria, and 22 children with renal involvement after Henoch-Schönlein purpura have been submitted to quantitative assessment, including differential counts of the various types of cell composing the renal glomeruli. These counts were found to be particularly valuable in the interpretation of slight degrees of 'proliferative' change in the renal glomeruli, the presence or absence of which may be difficult to establish subjectively.

In the biopsy specimens from children with Henoch-Schönlein nephritis and with recurrent haematuria, proliferative changes, where present, were either 'diffuse', involving all the glomeruli examined, or 'focal', involving only some glomeruli and sparing others. Despite the usual descriptions of a focal glomerulonephritis in these conditions, differential glomerular cell counts indicate that a diffuse proliferative glomerulonephritis is far commoner.

In children with recurrent haematuria renal biopsies showed morphologically normal glomeruli in the majority of cases. Proliferative changes were found only when significant proteinuria accompanied the haematuria.

Among the children with Henoch-Schönlein nephritis, a very good correlation was shown between the degree of structural damage revealed on renal biopsy and the subsequent clinical course.

Basilar artery thrombosis and giant cell arteritis. H. B. Marsden. Department of Pathology, Royal Manchester Children's Hospital, Pendlebury, Manchester M27 1HA.

A case of basilar artery thrombosis in a girl aged 3 years was reported. She was an only child, the father having died from Hodgkin's disease. There was a short history of slight headache and dizziness for about 2 weeks. On the day of admission to hospital the headache became very severe and there was gradual loss of consciousness over the next few hours. Right-sided hemiplegia was present at first and later the patient became decerebrate. Angiograms were of little help and CSF showed 20 leucocytes/mm³ with protein 20 mg/100 ml. The child died 2 days later, and at necropsy was found to have thickening of the basilar artery over a distance of about 7.5 mm. Microscopically there was acute arteritis of the basilar artery with recent and organized thrombus. Multinucleate giant cells were associated with fragmentation and swelling of the elastic lamina. No evidence of arteritis or other disease was noted elsewhere in the body. Necrotizing arteritis is well recognized in childhood but giant cell arteritis must also be considered in this age group.

Hypothalamic syndrome caused by 'pinealoma' occupying the third ventricle. J. N. Cox. Institut Universitaire de Pathologie, 40 Boulevard de la Cluse, Geneva.

An 8-year-old Tunisian female was transferred to the Paediatric Department, Geneva, in hypoglycaemic coma and died within 24 hours. She had presented symptoms of diabetes insipidus for over a year, but it was only within the month before her transfer that the clinical diagnosis of a cerebral tumour in the region of the third ventricle was made. This was confirmed at necropsy. The tumour filled the third ventricle with seedings in the dilated lateral ventricles, occupied the hypothalamus, and infiltrated the optic chiasma and lamina terminalis. It extended into the fourth ventricle by way of the cerebral aqueduct, infiltrating the superior and inferior colliculi. The histological picture was that of a 'pinealoma', also known as anisomorphic pinealocytoma (Zülch, 1956) or atypical teratoma (Russell and Rubinstein, 1971; Dayan et al., 1966). Serial sections of the pineal gland showed continuity of the tumour with its anterior portion, the remainder of the gland being normal (Wildi and Frauchiger, 1965). The long clinical evolution and the importance of the tumour mass in the hypothalamus and third ventricle (explaining the hypothalamic syndrome) with little or no involvement of the pineal gland favour the hypothesis of a slow growing tumour originating...

R A Risdon

Arch Dis Child 1974 49: 75
doi: 10.1136/adc.49.1.75-a

Updated information and services can be found at:
http://adc.bmj.com/content/49/1/75.2.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/