Vitamin E and haemolytic anaemia in premature infants

S. S. LO, D. FRANK, and W. H. HITZIG

From the Division of Haematology, Department of Paediatrics, University of Zürich, Switzerland

There was a relation between the type of nutrition and the onset of anaemia, anaemia regularly developing within 2 weeks of changing from human milk to a powdered cow's milk formula. Susceptibility to haemolysis was quantitated by measuring the free haemoglobin after exposure of the erythrocytes to hydrogen peroxide. This peroxide haemolysis was increased when the vitamin E level in the blood was below 0.6 mg/100 ml. It became normal a few days after vitamin E administration and the consequent rise in blood concentration.

It is concluded that a supplement of vitamin E is advisable from the 10th day onwards in premature infants who are artificially fed.

Several distinct features, ranging from encephalomalacia to hepatic or renal degeneration and nutritional muscular dystrophy, have been described in vitamin E deficient animals (Dacie, 1960; Darby et al., 1949; Darby, 1968). Vitamin E depletion is often found in humans with malabsorption syndromes, but several authors failed to find clear-cut clinical manifestations (Binder et al., 1965; Blanc, Reid, and Andersen, 1958; Gerloczy et al., 1961; Gordon, Nitowsky, and Cornblath, 1955; Gresham, Cruickshank, and Valentine, 1958; Kerner and Goldbloom, 1960; Harries and Muller, 1969; Majaj et al., 1963; Oppenheimer, 1956; Pappenheimer and Victor, 1946; Weinberg et al., 1958). Systematic studies of Majaj (1960) and Majaj et al. (1963) revealed, however, the causal relation between tocopherol deficiency and anaemia. The human infant is born with small body stores of tocopherols, and conventional artificial feeding results in a slower enhancement of these stores than does breast feeding (Darby, 1968). Vitamin E deficiency has recently been considered to be one of the causes of haemolytic anaemia in the premature infant (Hassan et al., 1966; Oski and Barness, 1967; Ritchie et al., 1968). We have studied 50 premature babies who developed varying degrees of anaemia at the age of 6 to 8 weeks and studied the effect of administering vitamin E.

Materials and methods

50 unselected premature babies with birthweight less than 2000 g were studied at weekly intervals from the age of 2 weeks onwards. In 30 healthy infants born at term the same tests were made once between the ages of 27 and 53 days. The study group was divided equally. 25 premature received α-tocopherol (Ephynal, Roche) 10 mg daily by mouth when the first signs of haemolysis appeared, i.e. at the age of 40±13 days. Of the other 25 premature, 12 were not treated at all, and 13 were treated 2 to 4 weeks after having developed signs of haemolytic anaemia (low haemoglobin, high reticulocyte count). There was no evidence of rhesus or other blood group incompatibility, haemoglobinopathy, enzymopathy, or other known causes of increased haemolysis in any of the infants admitted to the study. Routinely, these infants received oral vitamin C, iron, and vitamin D daily from the second week onwards. Nutrition: 6 were fed with human milk, 4 with commercial cow's milk formula only, and 34 received human milk until they reached 2000 g body weight and were then changed to commercial milk formulae (either Prodieston or Guigoz). The vitamin E content of these milk formulae was 30 to 40 μg/100 ml reconstituted milk. In contrast, human milk contains 100 to 480 (mean 240) μg
tocopherol/100 ml (Harris, Quaife, and O'Grady, 1952). Hb, haematocrit, reticulocytes, and peripheral blood films were determined or inspected weekly by conventional standard methods. The reticulocyte count per 1000 red cells was related to the actual Hb value by the formula

\[
\text{Retics (corrected)\%} = \frac{\text{Retics} \times \text{Hb (g/100 ml)}}{10}
\]

(Dacie, 1960).

Hydrogen peroxide haemolysis test was performed according to the method originally described by Rose and György (1952) and modified by Gordon et al. (1955). Serum tocopherol was assayed by the method of Hashim and Schuttinger (1966)*. Hydrogen peroxide haemolysis test was carried out at approximately weekly intervals on all the patients, and on 30 normal healthy children of varying ages as a control group.

Results

The control study on 30 normal children (Frank, 1970) showed that H$_2$O$_2$ haemolysis never exceeded 10%, which is consistent with the values given by Rose and György (1952) and Gordon et al. (1955). The serum levels of vitamin E among this group of children were found to be above 0·6 mg/100 ml, whereas others reported the critical level to be 0·5 mg/100 ml (Darby et al., 1949; Gordon et al., 1955; Mackenzie, 1954). However, there was a clear correlation between serum vitamin E levels and *in vitro* peroxide haemolysis tests (Fig. 1), with invariably some increased susceptibility of the red cells to the haemolytic action of hydrogen peroxide when the vitamin E level was below 0·6 mg/100 ml.

![Fig. 1.—Relation between serum tocopherol levels and H$_2$O$_2$-haemolysis in 15 premature and 30 term babies artificially fed, aged 27 to 53 days (Frank, 1970).](image)

Among our 50 premature babies studied, 38 developed signs of haemolytic anaemia at the age of 40±13 days, with Hb levels of 9·7±1·3 g/100 ml (mean±SD), reticulocytosis of 3·83±1·72% (corr.), *in vitro* peroxide haemolysis tests of 58±3±22·8%, and vitamin E levels ranging from 0·12 to 0·48 mg/100 ml in the serum; 6 were fed with human milk only and showed no evidence of anaemia; and the remaining 6 were discharged home at the age of 4 weeks with normal peroxide haemolysis test.

Among the 38 infants with evidence of haemolytic anaemia, 25 patients received α-tocopherol-acetate 10 mg daily by mouth; this was followed by an increase in Hb from a mean of 9·6±1·1 to 10·7±1·0 g/100 ml, decrease in the reticulocyte counts from a mean of 3·96±1·69% (corr.) to 1·95±1·03% (corr.), a fall of the *in vitro* peroxide haemolysis tests (mean 3·5±2·4%) and a rise in serum vitamin E levels to above 0·5 mg/100 ml after 13 to 21 days' treatment (Fig. 2 and Table I). These changes were all statistically significant (Table II).

TABLE I

Haematological findings in 25 premature infants before and after administration of vitamin E

<table>
<thead>
<tr>
<th></th>
<th>Before vitamin E therapy</th>
<th>After vitamin E therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O$_2$ haemolysis (%)</td>
<td>58·3±22·8</td>
<td>3·5±2·4</td>
</tr>
<tr>
<td>Reticulocytes (corrected) (%)*</td>
<td>39·6±16·9</td>
<td>19·5±10·3</td>
</tr>
<tr>
<td>Hb (g/100 ml)</td>
<td>9·6±1·1</td>
<td>10·7±1·0</td>
</tr>
</tbody>
</table>

*We thank Dr. W. F. Körner, Hoffmann-La Roche & Co., Basle, Switzerland, for the tocopherol determinations.

*Reticulocyte count corrected for anaemia by multiplying it by the factor Hb (g/100 ml)/16 (Dacie, 1960).
TABLE II
Correlation between type of feeding and haemolysis in 50 premature infants

<table>
<thead>
<tr>
<th>Feeding</th>
<th>No. of patients with haemolysis</th>
<th>No. of patients without haemolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human milk</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Human milk (discharged at 4 wk old)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Commercial milk formulae</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Human milk, then commercial milk formulae</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>12</td>
</tr>
</tbody>
</table>

The remaining 13 patients were sent home on vitamin E but only 2 were seen again in the outpatient department; both responded well to treatment.

Examination of the blood smears before treatment showed no specific anomalies other than a variable degree of anisocytosis, poikilocytosis, and polychromasia and, in a few cases, small numbers of spherocytes. After treatment, in the majority these features in the blood picture became less marked.

Clinically, no abnormality was observed in the vitamin E deficient babies. In 2 cases oedema of the lower extremities was present at 5 and 6 weeks of age, respectively; both had serum protein levels of 4.3 g/100 ml (normal value for their age 5.65 ± 0.40). Serum electrolytes were normal. Other causes of oedema were excluded. In one case, there was an unexplained swelling and redness of the finger joints: this, together with the haemolytic anaemia, subsided after 3 weeks' administration of vitamin E orally (Fig. 3). Fig. 3 and 4 illustrate two cases of vitamin E deficiency and their response to treatment.

Comparative studies were done on two pairs of twins and one pair of babies with similar birthweight and gestational age: one of each of these three pairs of infants was given vitamin E on the day of diagnosis of haemolytic anaemia and the other of the pair was kept under observation for 4 weeks before the administration of vitamin E. Fig. 5 illustrates the results in one of these pairs. In the early treated cases anaemia and reticulocytosis, and positive peroxide haemolysis test were present. After treatment with vitamin E these signs disappeared. No significant differences with respect to weight gain were observed between the early and late treated patients.

A relation appeared to exist between the type of feeding and the onset of anaemia: 34 out of the 38 patients were initially fed with human milk and were subsequently changed to commercial milk formulae (Prodiotet or Guigoz) when their weight approached 2000 g. Anaemia tended to develop, along with a positive peroxide haemolysis test, 10 to 14 days after the infants' feed had been changed to the milk formulae. The vitamin E content of these formulae was 30 to 40 μg/100 ml reconstituted milk, compared with an average value of 240 μg/100 ml in human milk (Harris et al., 1952).

Comment

When discussing the anaemia of prematurity, the normal haematological values and the course
Vitamin E and haemolytic anaemia in premature infants

However, the factor or factors that may contribute to these mechanisms and the relative influence of each remains unknown. Vitamin E deficiency as a cause of haemolytic anaemia in the premature infant was first reported by Oski and Barness (1967) and further supported by Ritchie et al., 1968. On the other hand, other workers have found no difference between the Hb levels of premature infants that are tocopherol deficient and tocopherol sufficient (Goldbloom and Cameron, 1963; Panos et al., 1968).

The patients in our study had Hb levels below and reticulocyte counts above the normal values of term babies (Guest and Brown, 1957), indicating that there was increased haemolysis. (It should be noted that the reticulocyte count when corrected for the degree of anaemia is numerically smaller than without this correction. For example, the uncorrected value for the reticulocyte level of the patient in Fig. 4 who had 8·0 g/100 ml Hb is twice as high (136%) as the corrected value (68%).) Our observations showed a close correlation between vitamin E concentration of the plasma and susceptibility to haemolysis in H2O2 (Fig. 1).

In breast-fed infants we have noticed that severe anaemia did not occur, whereas in artificially-fed babies anaemia was invariably present. Nitowsky et al. (1962) found that term infants fed on partially skimmed cow’s milk showed a decrease in plasma tocopherol; in the first 10 days the plasma level was 0·26 mg/100 ml, and by 30 days of age the level had fallen to an average of 0·13 mg/100 ml. Oral supplementation with small doses of tocopherol led to a prompt rise in plasma levels. Compared with the breast-fed infant weighing 2000 g who receives about 0·3 to 3 mg tocopherol daily, an artificially-fed baby of the same weight receives only about 0·03 to 0·12 mg. The requirements of the normal premature infant are met by a formula containing 3·0 mg of α-tocopherol per litre (Goldbloom and Cameron, 1963). These figures explain why only infants who are artificially fed are prone to vitamin E deficiency.

The mechanism of the haemolysis in vitamin E deficiency involves the following facts (Darby, 1968). Tocopherol is a potent antioxidant: it stabilizes polyunsaturated lipids and minimizes lipid peroxidation damage. In the presence of vitamin E deficiency, lipid peroxides accumulate rapidly (Century and Horwitt, 1960) and they bind free sulphhydryl groups (Lewis and Wills, 1962). Red cells are known to become hyper-permeable to cations when membrane sulphhydryl groups are blocked or oxidized (Jacob and Jandl, 1962 a, b). With a breakdown in cation gradients,
osmotic swelling ensues and haemolysis occurs.

Among the cases studied we failed to observe generalized oedema in vitamin E deficient prematures as described by Hassan et al. (1966) and Ritchie et al. (1968). In the only two cases with oedema of the lower extremities, the oedema was attributed to hypoproteinenaemia, but vitamin E deficiency might have been a contributory factor. Gerloczy et al. (1961) have reported 752 cases of ‘sclerema neonatorum’ among 16,033 premature babies; all had low levels of serum tocopherol and responded to oral administration of tocopherol acetate. The child in our series with unexplained swelling of the fingers might be regarded as having suffered a localized form of sclerema, which appeared to regress promptly after vitamin E administration. Tocopherol deficiency as a cause of oedema was also described in animal experiments (monkeys: Dinning and Day, 1957; Dinning, 1962; Fitch, 1968; Porter, Fitch, and Dinning, 1962; chickens: Bird and Culton, 1940; rats: Tsen and Collier, 1960).

Since the discovery of vitamin E half a century ago, various deficiency syndromes have been recognized in experimental animals and in man. Little is known, however, about signs of clinical toxicity of tocopherol excess in man. It has been reported that a normal adult can tolerate a total of 296 g vitamin E over a period of 93 days with a resulting high level in his plasma (2-26 mg/100 ml), but no abnormal clinical signs could be shown (Millman, 1957). All these toxicity studies have been carried out on adult animals and adult human beings. Because other drugs have earlier apparently been shown to be ‘safe’, but have later turned out not to be innocuous for premature infants (oxygen, vitamin K analogues, sulphasoxazole, chloramphenicol), administration of vitamin E to premature infants should be carried out cautiously. We have given 10 mg daily of vitamin E in the form of α-tocopherol acetate.

Body stores of tocopherol of the premature infant are lower at birth than those of the term infant (Dju, Mason, and Filer, 1958; Woodruff et al., 1964, Darby, 1968). After birth the relatively rapid weight gain of these babies, together with their limited ability to absorb fat from the usual cow’s milk formulae, result in a very poor net gain of vitamin E. It has been shown by Osaki and Barnes (1967) and confirmed by our own observation that administration of vitamin E to premature infants, particularly to those fed artificially, reduces both the severity of anaemia and the marked reticulocytosis commonly observed. It appears reasonable to supplement the diet for premature infants with vitamin E from the 10th day onwards, i.e. when their serum tocopherol levels are beginning to fall (Mackenzie, 1954; Nitowsky, Cornblath, and Gordon, 1956; Wright, Filer, and Mason, 1951). We recommend a daily dose of 10 mg vitamin E (tocopheryl-acetate) to infants of low birthweight, though others have found that as little as 0·5 mg/kg α-tocopherol daily suffices (Nitowsky et al., 1962).

References

Vitamin E and haemolytic anaemia in premature infants

Correspondence to Professor W. H. Hitzig, Kinderspital, Steinwiesstrasse 75, 8032, Zürich, Switzerland.
Vitamin E and haemolytic anaemia in premature infants

S. S. Lo, D. Frank and W. H. Hitzig

Arch Dis Child 1973 48: 360-365
doi: 10.1136/adc.48.5.360

Updated information and services can be found at:
http://adc.bmj.com/content/48/5/360

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/