Annotation

Archives of Disease in Childhood, 1972, 47, 679.

Neonatal Hypoglycaemia—A Critical Reappraisal

Few would deny that neonatal hypoglycaemia is a pathophysiological reality, but doubt still exists regarding the causes and consequences, and therefore the management, of the condition. The association between hypoglycaemia and abnormal neurological manifestations was first emphasized by Cornblath, Odell, and Levin (1959) who suggested that the brain damage suffered subsequently by some of the infants had been caused by the hypoglycaemia. Other work (Chance and Bower, 1966; Pildes et al., 1967; Haworth and McRae, 1967) corroborated these findings and showed that hypoglycaemia associated with clinical abnormality was followed more often by brain damage than was asymptomatic hypoglycaemia. The causal relation between hypoglycaemia and abnormal clinical signs was proven by the rapid correction of the abnormality by intravenous glucose (Cornblath et al., 1959); and this was illustrated in neuropathological terms by showing that infants dying from symptomatic hypoglycaemia had histological changes that differed, particularly in extent and distribution, from those associated with perinatal asphyxia, but that were similar to those reported in adults or experimental animals dying from hypoglycaemia (Anderson, Milner, and Strich, 1967).

If it is accepted that hypoglycaemia *per se* can cause neuronal damage in the newborn, the problem facing the paediatrician can be defined. By elucidating the pathogenesis of the low blood glucose level, a plan of rational investigation and treatment can be formulated and infants at risk can be characterized so that adequate prophylaxis may be offered. In drawing up plans for the detection, investigation, and treatment of hypoglycaemia it is important to devise a scheme which is generally applicable and not one which can be applied only in units with a high staff-patient ratio.

For simplicity, causes of hypoglycaemia in a newborn infant can be subdivided into those which result in deficient hepatic glucose production, and those acting via hyperinsulinism. Deficiency of hepatic glycogen stores has been incriminated in infants who are thought to be malnourished *in utero* (Shelley and Neligan, 1966), but this is probably not the most important factor in their hypoglycaemia. The main energy source of the normal infant switches from carbohydrate to lipid in the early hours of life, and it is reasonable to infer that, as in the fasting adult, this change is accompanied by depletion of hepatic glycogen. Thus the normal and the abnormal baby both use up their hepatic carbohydrate reserves within hours of birth. Hypoglycaemia probably develops in the small-for-dates infant and in the normally developed baby born very prematurely because of deficient hepatic gluconeogenesis from lipids and amino acids, lack of substrate delivery, particularly lipid, to the liver or to a combination of the two (see review by Adam, 1971). Subnormal hepatic glucose production may also be responsible for hypoglycaemia in rare metabolic errors such as glycogen storage disease. Deficient catecholamine secretion has been proposed as a cause of subnormal gluconeogenesis (Broberger and Zetterström, 1961; Stern, Sourkes, and Räihä, 1967). This hypothesis needs to be re-examined in the light of recent work suggesting that gluconeogenesis in the newborn rat is governed hormonally more by glucagon than by catecholamines (Girard, Bal, and Assan, 1972), and that the main effect of glucagon is not to stimulate glycogenolysis but gluconeogenesis (Cake, Yeung, and Oliver, 1971). For a given rate of hepatic glucose production the efficiency of utilization is an important modulating factor in the genesis of hypoglycaemia. Hypoxia dramatically reduces the energy produced per unit of glucose and probably has an additive effect with hypoglycaemia in the production of neuronal damage.

Hyperinsulinism is best understood as a cause of hypoglycaemia in infants born to diabetic mothers. The frequency and severity of symptomatic hypoglycaemia in these babies depends on the quality of maternal diabetic control (see Pedersen, 1967). Infants of gestational diabetics are less affected than those whose mothers are treated with insulin (McCann et al., 1966). Babies born to women treated with oral sulphonylureas have a slight but very real chance of intractable hypoglycaemia, for in addition to abnormal intrauterine development they are born with therapeutic levels of an insulinotropic drug in the circulation (Kemball et al., 1970).
It is not generally appreciated that erythroblastosis fetalis is probably the second commonest cause of hyperinsulimism (see review by Milner, 1971) which may cause symptomatic hypoglycaemia in the early hours of life or after exchange transfusion (Barrett and Oliver, 1968; Schiff et al., 1971). Rarer causes of hyperinsulimism are leucine-sensitive hypoglycaemia and abnormal development of the pancreatic islets. Frank insulinomas (Garces, Drash, and Kenny, 1968; Salinas et al., 1968; Grant and Barbor, 1970; Schwartz and Zwiren, 1971) and disorganized development of the islets (Yakovac, Baker, and Hummeler, 1971; Harken et al., 1971) are now being reported more frequently, which suggests that they may not be so rare a cause of hypoglycaemia as had been thought.

The lower limit of normal blood glucose levels is 30 mg/100 ml in term infants and 20 mg/100 ml in infants born prematurely (Cornblath and Schwartz, 1966). The incidence of hypoglycaemia with or without abnormal clinical signs will obviously depend on how energetically the condition is sought. The figure of 17 hypoglycaemic infants per 1000 in a neonatal population selected for admission to a special care unit is probably representative (Griffiths, 1968). Obviously the incidence of subgroups known to be at risk is greater. In small-for-dates babies the incidence of hypoglycaemia with abnormal signs correctable by intravenous glucose is approximately 6% (Pildes et al., 1967). About half the infants born to insulin-dependent diabetics and 20% of those born to gestational diabetics become hypoglycaemic. In these groups approximately one-fifth of the hypoglycaemic infants have abnormal signs (Beard et al., 1971). Remembering that permanent brain damage or death is a probable consequence of untreated symptomatic hypoglycaemia, it is easy to estimate from the above figures a minimum incidence of brain damage which will result from failure to diagnose and treat neonatal hypoglycaemia in a given hospital.

The abnormal signs caused by hypoglycaemia have been described in detail (Cornblath and Schwartz, 1966). Such signs may result also, and more frequently, from other disturbances of the central nervous, cardiovascular, or respiratory systems. The causal relation of hypoglycaemia to the signs can be proven only by giving glucose intravenously. It is possible in most hospitals to nurse infants known to be at risk from hypoglycaemia in a special area where the nursing staff can monitor blood glucose levels frequently with 'Dextrostix'. Prophylaxis against hypoglycaemia should also be provided in these circumstances by early feeding (Smallpeice and Davies, 1964; Wharton and Bower, 1965). The management of the infant found to have a low blood glucose by 'Dextrostix' will vary from centre to centre. Three possibilities arise when the blood glucose level is checked in the laboratory: the baby may be symptomless and be normoglycaemic, have symptoms and a low blood glucose level, or have symptoms and a normal blood glucose level. A simple but effective approach to the clinical problem arising from a low 'Dextrostix' reading is to confirm the blood glucose level in the laboratory before taking action if the infant is symptomless, but if symptoms are present to give intravenous glucose promptly. The decision to start a glucose or hexose infusion should be based more on the clinical response to intravenous glucose than the blood glucose level.

In this way effective treatment can be given with minimum delay and the rare contingency of a baby suffering from neuroglycopenia who is normoglycaemic at the time of blood sampling is also covered. The risk of iatrogenic harm from intravenous glucose is slight provided a peripheral vein is used.

If facilities are available the initial glucose injection can be used as an intravenous glucose tolerance test to estimate the glucose disappearance rate and thereby the severity of the hypoglycaemia (Gentz, Persson, and Zetterström, 1969). Le Dune (1972a) has shown in this way that hypoglycaemia in small-for-dates babies has a more complex aetiology than had been thought. Some infants had a rapid glucose disappearance with normal plasma insulin levels, due presumably to an intracellular glucose deficit, but in 6 of 18 small-for-dates hypoglycaemic infants the babies were hyperinsulinaemic also. To maintain an adequate caloric intake and blood glucose levels without overloading the baby with water, hypertonic solutions must be used. It has been argued that a mixture of glucose (10%), fructose (5%), and galactose (5%) is preferable to glucose (20%) (J. A. Davis, 1970, personal communication), the mixture of hexoses being thought to cause less irritation to the vein and both immediate and delayed rise in the blood glucose level after hepatic conversion of fructose and galactose to glucose. Against this, must be set the risks of the baby being intolerant of galactose or fructose. Intravenous therapy must be discontinued gradually, hypertonic solutions being replaced with isotonic glucose to avoid the risk of rebound hypoglycaemia which is particularly likely in hyperinsulinaemic states.

Though other drugs have been used in the management of symptomatic hypoglycaemia, none
has an established place in the management of the condition. Glucagon has been used to stimulate hepatic glycogenolysis. The blood glucose response to glucagon alone has been variously reported to be independent of the clinical state of the baby (Blum et al., 1969) or to be correlated with the fasting blood glucose level of hypoglycaemic small-for-dates infants (Le Dune, 1972b). Glucagon stimulates insulin secretion in the newborn (Milner and Wright 1967) and, as reported elsewhere in this issue of the Archives, Le Dune (1972b) has shown that a proportion of hypoglycaemic small-for-dates infants has an exaggerated plasma insulin response to intravenous glucagon. The use of glucagon alone in the treatment of neonatal hypoglycaemia is not recommended, but in view of the fact that glucagon may stimulate both glycogenolysis and gluconeogenesis, the therapeutic use of the hormone in combination with intravenous hexose should be studied further. Glucocorticoids have been recommended (see Klevit, 1970; Beard et al., 1971) but no critical study of the results of such treatment has been performed. The use of steroids may be irrational since adenocortical function in the normal newborn is as active or more active than in the adult (Okuno, Nishimura, and Kawarazaki, 1972), but Kenny and Preeyasombat (1967) did report that 4 of 8 infants suffering from transient neonatal symptomatic hypoglycaemia had low cortisol production rates. As for glucagon, a scientifically valid study of cortisol secretion and of the therapeutic use of cortisol in the treatment of neonatal hypoglycaemia is needed. Diazoxide has been used successfully to suppress insulin secretion in older children but has been generally ineffective in the management of neonatal hypoglycaemia due to insulinoma. Therapeutic trials of a long-acting catecholamine are being performed (Beard et al., 1971), but this drug, like the others, has other actions besides raising blood glucose levels which may be of more harm than benefit to the baby.

The management of hypoglycaemia is a satisfying facet of neonatal medicine because the condition can be diagnosed readily and treated effectively. Some of the confusion about the clinical significance of neonatal hypoglycaemia has stemmed from work in which the association of abnormal signs and hypoglycaemia has not been clearly differentiated from abnormal signs correctable by intravenous glucose (Griffiths, 1968; Griffiths and Bryant, 1971). The infrequency with which hypoglycaemia causes clinical neurological abnormality should not lull the paediatrician into complacency, for the end results of untreated symptomatic hypoglycaemia are permanent cerebral damage or death. Therefore, the emphasis must be on prophylaxis and, when indicated, rapid restoration of normoglycaemia.

R. D. G. MILNER
Department of Child Health, University of Manchester, St. Mary's Hospital, Manchester 13 OJH.

REFERENCES
LeDune, M. A. (1972a). Intravenous glucose tolerance and plasma insulin studies in small-for-dates infants. *Archives of Disease in Childhood, 47*, 111.

Neonatal hypoglycaemia--a critical reappraisal.

R D Milner

Arch Dis Child 1972 47: 679-682
doi: 10.1136/adc.47.255.679

Updated information and services can be found at:
http://adc.bmj.com/content/47/255/679.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/