Estimation of Glomerular Filtration Rate from Plasma Clearance of 51-Chromium Edetic Acid

C. CHANTLER* and T. M. BARRATT

From the Department of Immunology, Institute of Child Health, 30 Guilford Street, and Guy's Hospital, London

Chantler, C., and Barratt, T. M. (1972). Archives of Disease in Childhood, 47, 613. Estimation of glomerular filtration rate from plasma clearance of 51-chromium edetic acid. The glomerular filtration rate was estimated by a single compartment analysis of the rate of fall of plasma concentration of 51-chromium edetic acid after a single intravenous injection. This slope clearance consistently overestimated the simultaneously determined standard urinary clearance, but could be used to predict the latter with an accuracy of ±9% (95% confidence limits). The coefficient of variation of replicate estimates of the slope clearance in the same individual was 3-9%; thus two estimates of glomerular filtration rate by this technique which differ by 11% have a 95% probability of reflecting a genuine difference.

The method requires an intravenous injection and blood samples at 2 and 4 hours; urine samples are not required. It is simple, safe, and precise, and is applicable to children.

The estimation of glomerular filtration rate (GFR) is essential in the management of renal disease, but the inulin clearance is too complex and the endogenous creatinine clearance (Dodge, Travis, and Daeschner, 1967; Doolan, Alpen, and Theil, 1962; Kim et al., 1969) too imprecise for many clinical situations. There has therefore been a revival of interest in the possibility of estimating GFR from the rate of fall of plasma concentration of a substance after a single intravenous injection (slope clearance; C-slope) in spite of theoretical objections (Smith, 1951). The technique is so attractively simple that we have re-examined it using 51chromium edetic acid (51Cr-EDTA) which is not metabolized and is excreted solely by the kidney; its clearance is about 5% less than the simultaneously determined inulin clearance (Chantler et al., 1969; Lavender, Hilton, and Jones, 1969; Stamp, Stacey, and Rose, 1970). Some results of the slope clearance technique have already been published (Chantler et al., 1969) which correlated closely with the urinary clearance measured by the standard clearance techniques (UV/P clearance; C-UV/P). The purpose of this paper is to extend these observations, and to investigate the reproducibility of the slope clearance and its applicability to children.

Methods

51Cr-EDTA* was diluted with 5% dextrose and 0.5-1.0 μCi/kg body weight was administered by intravenous injection in a volume of approximately 10 ml. The exact dose was determined by weighing the syringe. A moderate diuresis was initiated with an oral water load and maintained throughout the test. Urine samples were obtained by voiding at 30-minute intervals and four venous blood samples were taken between 2 and 4 hours after the injection.

A dilution of the injected solution was used as reference standard and was counted with plasma and urine to an accuracy of ±2%. The urinary clearance (C-UV/P) was calculated from the urine activity, flow rate, and the interpolated plasma activity at the midpoint of each collection period with an allowance of 4 minutes for the mean renal transit time (Ekins et al., 1966). In all cases the plasma activity was apparently falling exponentially during the collection periods. C-UV/P was taken as the mean of the clearances obtained from each collection period.

The logarithm of the plasma activity (P0, cpm/ml) was plotted as a function of time and the apparent zero time plasma activity (P0) determined by extrapolation

Received 13 December 1971.

*Present address: University of California, Department of Pediatrics, San Francisco General Hospital, Portrero Avenue, California 94110, U.S.A.
of the linear part of the curve. The apparent volume of distribution ($V_b$, ml) was then derived:

$$V_b = \frac{\text{Volume injected (ml)} \times \text{standard activity (cpm/ml)} \times \text{dilution of standard}}{P_0}$$

The half period ($T_1$, min) of the linear part of the plasma decay was determined from the graph and the slope clearance ($C$-slope, ml/min) calculated as:

$$C\text{-slope} = \frac{0.693}{T_1} \times V_b$$

For endogenous creatinine clearances (C-creat) the plasma creatinine was estimated after absorption into an ion exchange resin and elution with alkaline picrate (Stoten, 1968); urine creatinine was measured on an Autoanalyser (Technicon method N11b). All clearance values have been corrected to $1.73 \text{m}^2$ body surface area (SA).

**Results**

Sixty-six simultaneous measurements of slope and UV/P clearance were obtained in healthy adult males and a group of non-oedematous adults and children over 5 years of age with a variety of renal diseases. The relation of C-slope to C-UV/P is shown in Fig. 1. The regression equation is:

$$C-UV/P = 0.70 \times \text{C-slope} + 7.24 \quad (r = 0.98; n = 66).$$

The mean ratio (R) of C-UV/P to C-slope for the 61 patients who had UV/P clearances of more than 10 ml/min per $1.73 \text{m}^2$ SA was $0.77 \pm 0.07$ (SD) and the predicted UV/P clearance (C-slope $\times 0.77$) expressed as a percentage of the observed UV/P clearance had a SD of 9%; this variation must in part be due to errors of estimation of the UV/P clearance. Inspection of Fig. 1 suggests that the relation between C-UV/P and C-slope is not linear: the mean value of R was significantly less in individuals in whom C-slope was less than 50 ml/min per $1.73 \text{m}^2$ SA (R = 0.65) and greater than 150 ml/min per $1.73 \text{m}^2$ SA (R = 0.70) than in those in whom C-slope was between 50 and 150 ml/min per $1.73 \text{m}^2$ SA (R = 0.79). There is also a slight but significant tendency for R to be lower in smaller individuals in the range of surface area studied (0.8–2.2 m$^2$):

$$R = 0.052 \text{SA} + 0.69 \quad (r = 0.32; n = 61).$$
Glomerular Filtration Rate from Plasma Clearance of 51-Chromium Edetic Acid

The validity of capillary blood sampling for determination of C-slope was investigated in 10 individuals in whom both capillary and venous samples were collected: the capillary C-slope was 101·9% ± 3·0% (SD) of the simultaneously determined venous C-slope.

The number of blood samples required for the accurate measurement of C-slope was investigated in 99 consecutive clearance determinations for which the linear part of the curve had been identified with 4 blood samples, and the clearance recalculated using the plasma values at 2 and 4 hours only. In 63 instances the plasma specimens were collected by venepuncture and the 2 sample estimate of C-slope was 99·7% ± 1·2% (SD) of the 4 sample estimate; in 36 calculations calculated from capillary samples (finger- or heel-prick) the corresponding figures were 99·9% ± 1·0% (SD).

The reproducibility of C-slope determinations in the same individual over a period of time was compared with that of the 24-hour endogenous creatinine clearance. Repeated measurements of C-slope were made over one year in 5 healthy adult males. The tests were performed between 9 a.m. and 1 p.m. after a normal breakfast, and whenever possible the subject was at rest during the last two hours of the test. Fluid intake varied; on some occasions a diuresis was initiated while on others water intake was governed by thirst. In the same individuals repeated estimates of creatinine clearances were obtained.

The results are shown in Tables I and II. The means and coefficients of variation of the observations on each individual are given. The pooled coefficient of variation of C-slope was 3·9%; thus two estimates of GFR by the slope technique which differ by more than 11% have a 95% probability of reflecting a genuine difference. The pooled coefficient of variation of creatinine clearance was 11·6%; two estimates would have to differ by 30% for the change to be significant.

### TABLE I

<table>
<thead>
<tr>
<th>Individual</th>
<th>CC</th>
<th>TMB</th>
<th>JFS</th>
<th>MS</th>
<th>JH</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>135</td>
<td>143</td>
<td>128</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>144</td>
<td>133</td>
<td>135</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>146</td>
<td>151</td>
<td>134</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>143</td>
<td>131</td>
<td>131</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>131</td>
<td>142</td>
<td>139</td>
<td>132</td>
<td>117</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>3·2%</td>
<td>3·4%</td>
<td>6·7%</td>
<td>2·4%</td>
<td>3·1%</td>
</tr>
</tbody>
</table>

Note: Pooled coefficient of variation = 3·9%.

### Discussion

There are several ways of analysing the falling plasma concentration curve to estimate clearance. The single exponential analysis used in this study has the advantage that only the latter part of the curve need be identified and fewer blood samples are necessary—indeed two blood samples (venous or capillary) suffice, making the technique particularly suitable for children. The use of capillary samples is of particular advantage in infants, as is the elimination of the need for timed urine collection. Indeed, this technique is the only satisfactory means of estimating GFR in infants with obstructive uropathy (Barratt and Chantler, 1970).

Though C-slope overestimates C-UV/P and the ratio C-UV/P: C-slope shows slight but systematic variation, being lower in the extreme ranges of GFR and in smaller individuals, an empirical correction factor of 0·77 can be applied to the slope clearances greater than 10 ml/min per 1·73 m²SA to obtain a reasonably accurate estimate of the UV/P clearance with 95% confidence limits of ±18%. The UV/P clearance of 51-Chromium-EDTA is about 5% less than that of inulin (Chantler et al., 1969); also, if an allowance of about 10% is made for the arteriovenous concentration difference which exists when the plasma concentration is falling, a composite correction factor of 0·87 applied to the slope clearance provides a reasonable estimate of the GFR. This use of an empirical correction factor is at least as accurate as more complicated analytical treatments of the falling plasma concentration curve (Truniger, Donath, and Kappeler, 1968; Bröchner-Mortensen, Giese, and Rossing, 1969; Brien, O'Hagan, and Muldowney, 1969).

The presence of oedema may delay the equilibration of the tracer within its volume of distribution...
Fig. 2.—Estimates of GFR from the slope clearance of $^{51}$Cr-EDTA and creatinine clearances in a 14-year-old boy with Henoch-Schönlein nephritis. Note that the consistent downward trend of GFR is apparent from the slope clearance data but not from the creatinine clearances.

We would like to thank Dr. N. Veall and Professor J. F. Soothill for valuable advice, and Mr. M. J. R. Healy for assistance with the statistical analyses. C.C. was in receipt of a Medical Research Council Clinical Fellowship. This study was part of an M.D. Thesis recently submitted to the University of Cambridge by one of us (C.C.).

REFERENCES


Glomerular Filtration Rate from Plasma Clearance of 51-Chromium Edetic Acid


Correspondence to Dr. T. M. Barratt, Department of Immunology, Institute of Child Health, London W.C.1.
Estimation of Glomerular Filtration Rate from Plasma Clearance of 51-Chromium Edetic Acid

C. Chantler and T. M. Barratt

*Arch Dis Child* 1972 47: 613-617
doi: 10.1136/adc.47.254.613

Updated information and services can be found at:
http://adc.bmj.com/content/47/254/613

**Email alerting service**

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/