Saccharopinuria

O. SIMELL, J. K. VISAKORPI, and MÄRTA DONNER
From the Children's Hospital, University of Helsinki, Helsinki, Finland

Simell, O., Visakorpi, J. K., and Donner, M. (1972). Archives of Disease in Childhood, 47, 52. Saccharopinuria. A girl with spastic diplegia excreted large amounts of lysine and saccharopine in the urine, and had more than 10 times the normal plasma lysine concentration and a saccharopine peak in the plasma amino acid chromatogram. Unlike the earlier reported case of saccharopinuria, this patient had normal plasma and urine levels of citrulline. This case affords further evidence that the main degradative pathway of lysine metabolism in man is via saccharopine and α-aminoadipic acid.

The fact that in this patient there is no other known cause of the spastic diplegia and that the diplegia seems to be progressing suggest a connexion with the metabolic disturbance.

In 1968, Carson et al. described the first patient with a new inborn error of lysine metabolism, saccharopinuria. This report presents a further case of this abnormality. A girl, aged 3 years and 6 months, was admitted to the hospital for study of spastic diplegia and was found to excrete large amounts of lysine and another substance, which was shown to be saccharopine. In this patient no excess citrulline could be detected in the plasma or urine.

Case Report

The patient was a girl aged 3 years and 6 months. She was born normally at term, Apgar score 9. Birthweight was 3640 g. The child was mildly yellow for the first few days, and the serum bilirubin was 13.6 mg/100 ml on the fourth day. Her motor development was a little slow, and she walked at the age of 16 months. From the beginning it was noticed that she had difficulty in walking, and from the age of 2 years this has grown worse; she only walks a few steps without support.

Physical examination. At presentation, the patient had spastic diplegia with spasticity especially in the calf muscles and hip adductors. Dorsiflexion of the feet was difficult and the feet were in the valgus position. She walked with knees and hips somewhat flexed (Fig. 1). There was some clumsiness in the upper extremities and some involvement of the throat muscles, with dribbling, difficulty in swallowing, and mild dysarthria. The tendon reflexes were exaggerated and there was ankle clonus; the abdominal reflexes were normal. At the same time there was some weakness of the trunk and hip muscles and possibly slight ataxia.

Somatically she was otherwise normal for her age.

Her hair was a beautiful red colour and the skin and nails normal. The liver and spleen were not palpable and the height, weight, and head circumference had followed the line of the 50th centile of the tables for Finnish children since birth. Her mental development was slightly retarded and she had difficulty in concentrating.

Laboratory findings. The following laboratory tests gave normal results: haematological examination,
Saccharopinuria

53

spheres was normal. Neuro-ophthalmological examination gave normal results.

In high voltage electrophoresis of urinary amino acids (Visakorpi, 1960) conspicuous lysinuria was found and what was at first thought to be glutamic aciduria (Fig. 2). In ion exchange chromatography (Spackman, Stein, and Moore, 1968) this fraction was seen to move exactly like saccharopine.* A peak in the position of α-amino-adipic acid was also seen. In the serum, more than 10 times the normal amount of lysine was seen and traces of saccharopine too. Urinary and plasma citrulline were normal. The amino acid levels in the plasma of the patient are presented in the Table.

TABLE

Plasma Amino Acid Concentrations (μmoles/ml) in Patient with Saccharopinuria

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Patient with Saccharopinuria</th>
<th>Normal Children (range)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>0.028</td>
<td>0.173-0.305</td>
</tr>
<tr>
<td>α-aminoadipic acid</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Arginine</td>
<td>0.050</td>
<td>0.023-0.086</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>0.002</td>
<td>0.004-0.023</td>
</tr>
<tr>
<td>Asparagine + glutamine</td>
<td>0.526</td>
<td>0.057-0.467</td>
</tr>
<tr>
<td>Citrulline</td>
<td>0.015</td>
<td>0.012-0.055†</td>
</tr>
<tr>
<td>Cystine</td>
<td>0.091</td>
<td>0.048-0.140†</td>
</tr>
<tr>
<td>ε-N-acetyl-lysine</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>0.035</td>
<td>0.023-0.250</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.173</td>
<td>0.117-0.223</td>
</tr>
<tr>
<td>Histidine</td>
<td>0.079</td>
<td>0.024-0.085</td>
</tr>
<tr>
<td>Homocitrulline</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>0.103</td>
<td>0.028-0.084</td>
</tr>
<tr>
<td>Leucine</td>
<td>0.200</td>
<td>0.056-0.178</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.320</td>
<td>0.071-0.151</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.034</td>
<td>0.011-0.016</td>
</tr>
<tr>
<td>Ornithine</td>
<td>0.024</td>
<td>0.027-0.086</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>0.061</td>
<td>0.026-0.061</td>
</tr>
<tr>
<td>Proline</td>
<td>0.131</td>
<td>0.068-0.148</td>
</tr>
<tr>
<td>Saccharopine</td>
<td>Trace</td>
<td>0.000</td>
</tr>
<tr>
<td>Serine</td>
<td>0.157</td>
<td>0.079-0.112</td>
</tr>
<tr>
<td>Threonine</td>
<td>0.137</td>
<td>0.042-0.095</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.061</td>
<td>0.031-0.071</td>
</tr>
<tr>
<td>Valine</td>
<td>0.028</td>
<td>0.128-0.283</td>
</tr>
</tbody>
</table>

*From Scrivener and Davies (1965).
†From Dickinson, Rosenblum, and Hamilton (1965).

Family. The parents and sibs of the patient had normal urinary amino acid patterns and were clinically healthy. The parents are not aware of any consanguinity, but all the grandparents of the patient come from the same rather isolated community.

Discussion

Lysine has some peculiar metabolic features (Fig. 3). It does not participate in reversible transamination like other amino acids (Schoenheimer and Rittenberg, 1940; Weissman and Schoenheimer, 1941) and is incorporated directly into proteins (Clark and Rittenberg, 1951). The inactivation

serum electrolytes, calcium, inorganic phosphate, alkaline phosphatase, blood sugar, serum protein and electrophoretic pattern of the serum proteins, aspartate aminotransferase, alanine aminotransferase, protein-bound iodine, capillary pH, and urinalysis. Blood ammonia and urea were normal both after fasting and postprandially.

Radiological examination revealed no osteoporosis. The electroencephalogram has been recorded three times between the ages of 2 and 3 years and has been normal or slightly abnormal with some excess of slow activity. No recordings have been made during sleep. Pneumoencephalography revealed dilatation, especially of the middle part of the lateral ventricles and of the pontine cistern, as a sign of moderate central and basal atrophy, while the distribution of the gas over the hemi-

Fig. 2.—High voltage electropherogram from the urine of (A) saccharopinuric patient, (B) normal control, and (C) patient with lysinuric protein intolerance (Perheentupa and Visakorpi, 1965). The pH of the buffer was 2·1. The symbols are: (1) tyrosine, (2) glutamine, glutamic acid, citrulline, and saccharopine, (3) threonine, (4) serine, (5) alanine, (6) glycine, (7) histidine, (8) lysine and ornithine.
Simell, Visakorpi, and Donner

of the epsilon-amino group of lysine by acylation leads to free deamination of the alpha-amino group (Paik, 1962). Using isotope methods and large amounts of pimelic acid as a 'trap', Rothstein and Miller (1954) isolated a relatively high concentration of pimelic acid from rat urine, and concluded that the pimelic acid pathway was the major route of lysine metabolism in the rat. Rothstein and Greenberg (1960) showed that pimelic acid forms alpha-aminoacidic acid and glutaric acid in the rat, and that rat liver mitochondria oxygenate pimelic acid and alpha-aminoacidic acid to CO₂. Later on, it was verified (Grove et al., 1969) by isotope trapping methods that in the rat L-pimelic acid is formed from D- and L-lysine after removal of an alpha-amino group, and that D-lysine is a much better precursor of pimelic acid than L-lysine. The authors stated that, in the metabolism of L-lysine, pimelic acid might not be the main route. In 1968, Gatfield et al. reported a patient with greatly raised serum pimelate and urinary pimelic acid. In this patient there was no rise in pimelic acid in the serum or urine after a peroral L-lysine load.

Saccaropine was first isolated from yeast (Darling and Larsen, 1961). It has been shown to be the precursor of lysine in yeast (Kuo, Saunders, and Broquist, 1964). In mammals, Higashino, Tsukada, and Lieberman (1965) noticed that saccaropine was formed by rat liver mitochondria from lysine in reaction with alpha-ketoglutarate. In 1967, Higashino et al. established that alpha-aminoacidic acid was formed in mitochondria of rat liver from saccaropine, and that NAD was required in the reaction. Hutzler and Dancis (1968) found lysine-ketoglutarate reductase activity in many human organs in vitro and partially purified it. This enzyme specifically requires TPNH for its action. In the human liver the activity of lysine-ketoglutarate reductase many times exceeds the ordinary dietary requirements.

In the published reports 7 cases of persistent hyperlysinaemia are reported (Woody, 1964; Ghadimi, Binnington, and Pecora, 1964; Woody and Ong, 1967; Ghadimi, Zischka, and Binnington, 1967; Armstrong and Robinow, 1967; Woody and Pupene, 1970). Dancis et al. (1969) have shown a clear decrease in the activity of lysine-alpha-ketoglutarate reductase in fibroblasts of 3 patients with hyperlysinaemia, and have confirmed that the metabolic block lies there. In 1968, Carson et al. described the first patient with saccaropinuria, and this girl had high levels of lysine, saccaropine, and, surprisingly, citrulline in the serum and urine. In the urine, traces of epsilon-N-acetyl-lysine were found, which possibly means that in this patient the pimelic acid pathway serves as an overload route (Carson, 1969). The high citrulline led the authors to suggest that there was a relation between lysine degradation via the saccaropine pathway, citrulline, and the urea cycle.

Some features of our patient differ from those just described. Our patient has no hypercitrullinaemia, and lysine and saccaropine are higher in her plasma. The metabolic block in this patient may be between saccaropine and alpha-aminoacidic acid or between the latter and alpha-ketoacidic acid. Yet there is an alternative possibility exists, namely that transport of saccaropine to or from the mitochondria in the liver cells is prevented.

The findings in this patient and in the girl described by Carson et al. lend added support to the view that the saccaropine-alpha-aminoacidic acid pathway is the main route of lysine metabolism.

The fact that in this patient there is no other known cause of the spastic diplegia and that the diplegia seems to be progressing suggests its connexion with the metabolic disturbance.

REFERENCES

Higashino, K., Puijoka, M., Aoki, T., and Yamamura, Y. (1967). Metabolism of lysine in rat liver. *Biochemical and Biophysical Research Communications*, 20, 95.

Correspondence to Dr. O. Simell, Children's Hospital, University of Helsinki, 00290 Helsinki 29, Finland.
Saccharopinuria

O. Simell, J. K. Visakorpi and Märta Donner

Arch Dis Child 1972 47: 52-55
doi: 10.1136/adc.47.251.52

Updated information and services can be found at:
http://adc.bmj.com/content/47/251/52

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/