Sex Chromatin and Chromosome Abnormalities among 10,412 Liveborn Babies

S. N. PANTELAKIS, OLIA-MARIA CHRYSSOSTOMIDOU, D. ALEXIOU,
T. VALAES, and S. A. DOXIADIS
From the Institute of Child Health, Athens, and The Neonatal Unit of the State and University 'Alexandra' Maternity Hospital, Athens, Greece

Pantelakis, S. N., Chryssostomidou, Olla-Maria, Alexiou, D., Valaes, T., and Doxiadis, S. A. (1970). Archives of Disease in Childhood, 45, 87. Sex chromatin and chromosome abnormalities among 10,412 liveborn babies. Among 10,412 liveborn infants surveyed in a large maternity hospital in a 2-year period, there were 13 cases (0.13%) of discrepancy between sex phenotype and sex chromatin (0.15% among male infants and 0.10% among female infants). There were 22 cases of trisomy-21 (incidence 0.21%), 3 cases of trisomy-18, and 1 case of trisomy-13-15. 9 cases presented multiple congenital abnormalities but the karyotype was normal.

Only the incidence of cases with Down's syndrome is higher than that reported in the literature. Maternal and paternal age, seasonal clustering, infectious diseases before or at the beginning of pregnancy, and x-ray exposure of parents, showed no correlation with Down's syndrome. Among the cases of Down's syndrome there was a significantly higher maternal and paternal mean age and a maternal history of infectious hepatitis was more frequent.

Since Moore and Barr (1955) described the method of determining the sex chromatin by examining the nuclei of the cells of the oral mucosa, it has been possible to screen large populations for sex chromosome abnormalities. During the past few years several authors have undertaken such sex chromatin surveys on newborn populations in order to establish the frequency of discrepancies between sex genotype and sex phenotype. A range of discrepancy, perhaps related to differences of the ethnic groups studied, has been found from 0% in India (Naik and Shah, 1962) to 0.23% in Scotland (Maclean et al., 1964) and Mexico (Marquez-Monter, Carnevale-Lopez, and Kofman-Alfaro, 1968). Some authors (Robinson and Puck, 1965) have suggested that sex chromosome abnormalities due to non-disjunction are perhaps related to external factors. More studies are needed in order: (1) to elucidate the problem of the over-all frequency, (2) to look for any differences in the incidence between the two sexes, (3) to investigate the relation of the frequency in the ethnic group studied to external factors such as epidemics of viral infections, use of drugs, or exposure to x-rays.

The present study concerns a neonatal survey of all liveborn babies born at the State and University Maternity Hospital 'Alexandra' during a two-year period (1.10.66–30.9.68). The current practice in Greece, and particularly in the area of Athens, is for unselected hospital delivery, and this is the case for over 90% of the deliveries.

Material and Methods

During the period of study each pregnant woman admitted for delivery was included in the survey. Details about her social class, age, previous medical history, and medical history of her husband were collected, on a questionary of about 80 coded questions. For each newborn child sex chromatin determination was performed blindly on the amnion membranes according to the method of Klinger (1957) as modified by J. H. Edwards (personal communication, 1964). The results were afterwards compared with the sex phenotype. All newborns were clinically examined by one of us. In cases of discrepancy or low Barr bodies count, buccal smears were examined for confirmation of the findings by the method of Moore and Barr (1955) with minor modifications. For all newborn infants

Received 18 July 1969.
who either presented a discrepancy between sex chromatin and sex phenotype, or were found to have multiple congenital abnormalities or anomalies suggesting one of the known trisomic syndromes, a full clinical examination was done and karyotyping was performed by white blood cell culture according to the method of Moorhead et al. (1960) as modified by de Grouchy, Roubin, and Passage (1964).

Results

The method we have used for the evaluation of sex chromatin from amnion membranes gave satisfactory and reliable results (Pantelakis and Panagopoulos, 1968). Among 500 female newborns the mean percentage of nuclei with presence of Barr bodies was 42·5%, (SD 10·4%) (Fig.).

![Percentage distribution of Barr body positive nuclei in amniotic membrane preparations from 500 female newborns.](image)

Among the male infants scores were never above 2%. All cases with a score below 2 SD from the mean were considered as suspects for mosaicism, and the karyotype was examined.

During the two-year period of the investigation 13,823 women were admitted for delivery. The liveborn babies in whom sex chromatin was examined were 10,412 and they were not selected (Table I). In the material studied the rate of stillbirths was 3·2%, and that of multiple births 1·2%. 380 of the mothers were primiparae and 620 were multiparae. These frequencies were found to be essentially the same when considering either the total number of women admitted or the number of women whose babies had their sex chromatin examined.

The over-all incidence of discrepancy between sex phenotype and sex chromatin as well as the incidence separately in male and female newborns is shown in Table II. As can be seen in this

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>No. of Infants</th>
<th>No. of Abnormal Cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>5382</td>
<td>8</td>
<td>0.15</td>
</tr>
<tr>
<td>Female</td>
<td>5030</td>
<td>5</td>
<td>0.10</td>
</tr>
<tr>
<td>Total</td>
<td>10,412</td>
<td>13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table there were 8 cases of discrepancy among the 5382 phenotypical male newborns screened (an incidence of 0·15%) and 5 cases among the 5030 phenotypical females (an incidence of 0·10%).

In Table III are given the details of the chromosomal constitution of the 13 cases which have been considered as abnormal on sex chromatin screening because they were found to present: (a) a discrepancy between phenotype and sex chromatin, or (b) a Barr body count less than 2 SD from the mean for our method (mean 42·5% ± 10·4%), or (c) two or more chromatin masses. Thus, among the male newborns there were 6 cases of XXY Klinefelter's syndrome and 2 cases of XXY/XY mosaics. Among the female newborns there were 2 cases of XO/XX mosaics and 3 cases of XXX.

<table>
<thead>
<tr>
<th>Syndromes</th>
<th>No. of Cases</th>
<th>Incidence %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinefelter XXY</td>
<td>6</td>
<td>0.11</td>
</tr>
<tr>
<td>Mosacies XXY/XY</td>
<td>2</td>
<td>0.04</td>
</tr>
<tr>
<td>Turner XO</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Mosacies XO/XX</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Superfemale XXX</td>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

In Table IV are presented the social class and
Sex Chromatin and Chromosome Abnormalities Among 10,412 Liveborn Babies

TABLE IV
Social Class and Maternal and Paternal Age of Cases with Sex Chromatin Abnormalities

<table>
<thead>
<tr>
<th>Social Class</th>
<th>Total No. Examined</th>
<th>Abnormal Cases</th>
<th>Mean Maternal Age (yr.)</th>
<th>Mean Paternal Age (yr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
<td>Abnormal</td>
</tr>
<tr>
<td>1</td>
<td>396</td>
<td>2</td>
<td>28</td>
<td>8/12</td>
</tr>
<tr>
<td>2</td>
<td>1,353</td>
<td>13</td>
<td>28</td>
<td>2/12</td>
</tr>
<tr>
<td>3</td>
<td>8,663</td>
<td>2</td>
<td>27</td>
<td>5/12</td>
</tr>
<tr>
<td>Total</td>
<td>10,412</td>
<td>13</td>
<td>27</td>
<td>6/12</td>
</tr>
</tbody>
</table>

the maternal and paternal mean ages of the whole material in comparison to those of the 13 cases with sex chromosome abnormalities. For practical reasons it was decided to distinguish the women studied in three main social classes according to education, occupation, and standard of living. As can be seen from this Table the great majority of these women (83%) belong to the lower social class. The mean maternal and paternal age of the abnormal cases was a little higher than that of the total but not significantly so.

In Table V is shown the incidence of phenotypically abnormal babies with autosomal trisomies. There were 22 cases of trisomy-21, 3 cases of trisomy-18, and 1 case of trisomy-13-15. 9 cases with multiple congenital abnormalities were found to have normal karyotypes.

In Table VI are presented the social class and the maternal and paternal mean age of these cases. 18 cases of Down's syndrome were born to women belonging to the 3rd social class, while 4 infants were born to women belonging to the 1st and 2nd social class. The mean maternal and paternal ages of the newborns with Down's syndrome were significantly higher than the maternal and paternal mean ages of the normal newborns.

The analysis of factors such as infectious diseases or x-ray exposure immediately before or at the beginning of pregnancy showed no relation between these factors and the occurrence of sex chromatin discrepancy or Down's syndrome.

A history of maternal infectious hepatitis (as diagnosed at the time of the disease by the attending doctor) before the present pregnancy was more frequent among the mothers of babies with Down's syndrome. As cases with Down's syndrome were born to mothers of an older age and the chances of having had infectious hepatitis were higher, we present in Table VII a more detailed analysis of the incidence of infectious hepatitis in our material in different age-groups. As it is shown in this Table the incidence of infectious hepatitis in the maternal history increases from 3-35% among

TABLE V
Incidence of Autosomal Trisomies and Multiple Congenital Abnormalities among 10,412 Liveborn Newborns

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>No. of Cases</th>
<th>Incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisomy-21</td>
<td>22</td>
<td>0.21</td>
</tr>
<tr>
<td>Trisomy-18</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>Trisomy-13-15</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>Multiple congenital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abnormalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with normal karyotype</td>
<td>9</td>
<td>0.09</td>
</tr>
</tbody>
</table>

TABLE VI
Social Class and Maternal and Paternal Age in Cases with Down's Syndrome

<table>
<thead>
<tr>
<th>Social Class</th>
<th>Total Examined and Percentage</th>
<th>Down's Syndrome</th>
<th>Other Trisomies</th>
<th>Multiple Congenital Abnormalities</th>
<th>Maternal Age (yr.) (mean and range)</th>
<th>Paternal Age (yr.) (mean and range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normals</td>
<td>Down's</td>
</tr>
<tr>
<td>1st</td>
<td>396 (3.8%)</td>
<td>2</td>
<td>1</td>
<td></td>
<td>28 8/12 (17-44)</td>
<td>29</td>
</tr>
<tr>
<td>2nd</td>
<td>1,353 (12.9%)</td>
<td>2</td>
<td>1</td>
<td></td>
<td>28 2/12 (16-41)</td>
<td>27</td>
</tr>
<tr>
<td>3rd</td>
<td>8,663 (83.3%)</td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>27 5/12 (14-50)</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>10,412</td>
<td>22</td>
<td>4</td>
<td>9</td>
<td>27 6/12 (14-50)</td>
<td>34 1/12</td>
</tr>
</tbody>
</table>
TABLE VII

<table>
<thead>
<tr>
<th>Age-group (yr.)</th>
<th>No. of Cases</th>
<th>No. with Positive History of Infectious Hepatitis</th>
<th>Incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><24</td>
<td>3455</td>
<td>116</td>
<td>3.5</td>
</tr>
<tr>
<td>25–29</td>
<td>3075</td>
<td>122</td>
<td>3.96</td>
</tr>
<tr>
<td>30–34</td>
<td>2300</td>
<td>146</td>
<td>6.17</td>
</tr>
<tr>
<td>35 and over</td>
<td>1248</td>
<td>77</td>
<td>6.17</td>
</tr>
<tr>
<td>Total</td>
<td>10,278</td>
<td>461</td>
<td>4.48</td>
</tr>
</tbody>
</table>

TABLE VIII

<table>
<thead>
<tr>
<th>History of Maternal Infectious Hepatitis</th>
<th>Absent</th>
<th>Present (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal newborns</td>
<td>2374</td>
<td>223 (5.9)</td>
<td>3.971</td>
</tr>
<tr>
<td>Newborns with Down’s Syndrome</td>
<td>18</td>
<td>4 (18%)</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>3766</td>
<td>227</td>
<td>3.993</td>
</tr>
</tbody>
</table>

\(\chi^2 = 6.45; p < 0.025. \)

Discussion

In surveys where nuclear sexing is used as screening method for the detection of sex chromosome anomalies those affecting the Y chromosome will not be detected. Thus a case of XXY will not present a discrepancy between sex chromatin and sex phenotype. The frequency of this abnormality is assumed to be 1:1000 in the liveborn male population (Court Brown, 1968).

The material usually examined for sex chromatin determination is buccal mucosa. This examination, however, can be performed in all other tissues. During the first 2 days of life it is known that the percentage of nuclei with presence of Barr bodies in buccal smears in female newborns can be below 20% (Smith et al., 1962; Taylor, 1963; Frasier, Crudo, and Farrell, 1964). On the other hand, the collection of buccal smears from all newborns during the first 48 hours after birth presents technical difficulties.

We believe that the advantages of studying the sex chromatin on amnion membranes in the neonatal period can be summarized as follows: (a) the collection of placenta in the delivery room is simple, does not require specialized personnel, and does not disturb the neonate; (b) the examination can be performed in stillbirths or neonates dying a few hours after delivery; (c) the score of nuclei with Barr bodies present among the female newborns is high enough to make readings easy and to indicate suspects for mosaicism; (d) it is easy to examine as many specimens from the amnion membranes as are needed to obtain a satisfactory preparation.

The frequency of sex chromatin discrepancies in the newborn population in different countries as reported in the literature is presented in Table IX.
Sex Chromatin and Chromosome Abnormalities Among 10,412 Liveborn Babies

The analysis of other factors such as maternal and paternal age, infectious diseases immediately before or during pregnancy, and x-ray exposure did not show any correlation with the occurrence of sex chromosome abnormalities.

Among the 10,412 newborns studied there were 3 cases with trisomy-18 (0.03%) and 1 case with trisomy-13 (0.01%). Taylor (1968) reviewing the literature concerning a total of about 115,000 newborns reported an incidence of 0.02% for trisomy-18 and of 0.01% for trisomy-13. Our findings cannot be considered to differ significantly.

In the cases with Down’s syndrome the most important single factor different from the normals was the advanced maternal age, a fact well established by all authors who studied this condition.

Pleydell in 1957 reported data suggesting a clustering of cases of Down’s syndrome in space and time. Similar findings were reported later by Stoller and Collmann (1966). As Leck (1966) points out none of the above-mentioned reports is entirely conclusive: the data did not prove with certainty that the clustering in space and time exceeded that which might be expected by chance.

In the present investigation the births of babies with Down’s syndrome were evenly distributed in the two-year period of the survey, as was also found by Leck (1966) and Robinson and Puck (1967).

The incidence of Down’s syndrome in the present survey is 0.21%, higher than the incidence of 0.15% reported by Penrose (1963), of 0.16% by Leck (1966), of 0.11% by Robinson and Puck (1967), and of others. In our attempt to explain this higher incidence we have analysed different factors in the maternal and paternal health history, such as important infectious diseases before or at the beginning of pregnancy, x-ray exposure etc. From this analysis the only difference that we have been able to detect in the parental history of the cases with mongolism was a higher incidence of infectious hepatitis in the history of the mothers, 3 times higher than in the normal female population of a comparable age (aged 30 years and more). Though the number of cases with Down’s syndrome was small, the difference was statistically significant.

Stoller and Collmann (1966) found an apparent relation between infectious hepatitis and Down’s syndrome, but others (Stark and Mantel, 1966; Leck, 1966; and Ceccarelli and Torbidoni, 1967) have not confirmed these findings.

Unlike these other studies we have not tried to relate infectious hepatitis at the beginning of pregnancy with the birth 9 months later of a child with Down’s syndrome, but we found that mothers...
who have had clinical infectious hepatitis before
their pregnancy have a 3 times higher risk of having
a child with Down's syndrome than mothers of
a comparable age without a history of infectious
hepatitis.

We believe that the problem of a possible relation
between viral infections and birth of children with
chromosomal abnormalities such as trisomy-21
cannot yet be considered as solved, and more
extensive studies are needed.

If, however, a positive relation of infectious hep-
titis and birth of cases with Down's syndrome does
exist, as our study tends to show, then the higher
incidence of Down's syndrome of the present study
could perhaps be due to differences in the incidence
of infectious hepatitis between the ethnic groups
studied.

Part of this investigation was supported by PHS
Research Grant No. 5R01 NBO 6390 01-03 from the
United States National Institute of Neurological
Diseases and Blindness, and by Research Grant No.
423/608/764 from the Royal Hellenic Research Founda-

REFERENCES

Neugeborenen. Schweizerische medizinische Wochenschrift, 91,
292.

Obsterics and Gynecology, 26, 308.

Ceccarelli, G., and Torbidoni, L. (1967). Viral hepatitis and

Court Brown, W. M. (1968). Males with an XYY sex chromosome
complement. Journal of Medical Genetics, 5, 341.

de Grouchy, J., Roubin, M., and Passage, E. (1964) Microtech-
nique pour l'étude des chromosomes humains à partir d'une
culture de leucocytes sanguins. Annales de Genetique, 7, 45

Buccal smears in the newborn female. Journal of Pediatrics, 65,
222

Freeland, A. (1967). Seasonal dependence in birth of patients with

Klinger, H. P. (1957). The sex chromatin in fetal and maternal

Lancet, 2, 457.

Abnormalities of sex chromosome constitution in newborn

———, ———, Bond, J. L., and Mantle, D. J. (1964). Sex-chromo-
some abnormalities in newborn babies. ibid., 1, 286.

(1968). Sex chromatin survey in 3000 newborn infants in

Moore, K. L. (1959). Sex reversal in the newborn babies. Lancet, 1,
217.

———, and Barr, M. L. (1955). Smears from the oral mucosa in the
detection of chromosomal sex. ibid., 2, 57.

Moorhead, P. S., Nowell, P. C., Mellman, W. J., Battips, D. M.,
and Hungerford, D. A. (1960). Chromosome preparations of
leucocytes cultured from human peripheral blood. Experi-
mental Cell Research, 20, 613.

Naik, S. N., and Shah, P. N. (1962). Sex chromosome abnormali-

human amnion membranes (Greek). Iatriki Athinai, 15,
479.

Sidgwick and Jackson, London.

Pleydell, M. J. (1957). Mongolism and other congenital abnor-
malities. An epidemiological study in Northamptonshire.
Lancet, 1, 1314.

preliminary evidence for external factors in human non-
disjunction. Science, 146, 83.

———, and ——— (1967). Studies on chromosomal nondisjunction in
man. II. American Journal of Human Genetics, 19, 112.

Smith, D. W., Marden, P. M., McDonald, M. J., and Specchard, M.
(1962). Lower incidence of sex chromatin in buccal smears

syndrome. Lancet, 2, 859.

syndrome. ibid., 2, 339.

912.

———, (1968). Autosomal trisomy syndromes: A detailed study of
27 cases of Edward's syndrome and 27 cases of Patau's syndrome.
Journal of Medical Genetics, 5, 227.

———, and Moores, E. C. (1967). A sex chromatin survey of
newborn children in two London Hospitals. ibid., 4, 258.

Wiesli, B. (1962). Vergleich des phänotypischen und zellkern-
morphologischen Geschlechts bei 3029 Neugeborenen.

Correspondence to S. N. Pantelakis. Institute of
Child Health, Goudi, Athens 608, Greece.
Sex Chromatin and Chromosome Abnormalities among 10,412 Liveborn Babies

S. N. Pantelakis, Olia-Maria Chryssostomidou, D. Alexiou, T. Valaes and S. A. Doxiadis

Arch Dis Child 1970 45: 87-92
doi: 10.1136/adc.45.239.87

Updated information and services can be found at:
http://adc.bmj.com/content/45/239/87

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/