Carbohydrate-induced Hypertriglyceridaemia in a Child*

M. M. SEGALL, AUDREY S. FOSBROOKE, JUNE K. LLOYD, and O. H. WOLFF

From the Department of Child Health, Institute of Child Health, University of London

Segall, M. M., Fosbrooke, Audrey S., Lloyd, June K., and Wolff, O. H. (1970). Carbohydrate-induced hypertriglyceridaemia in a child. Archives of Disease in Childhood, 45, 73. Carbohydrate-induced hypertriglyceridaemia is described in a 12-year-old boy, whose father died of premature coronary heart disease. Serum triglyceride and pre-β-lipoprotein concentrations were high on a self-selected diet and were reduced to normal by a low carbohydrate diet. It proved difficult to maintain triglyceride levels by diet at home, but the addition of clofibrate improved the control.

Clearing of lipid from the serum after an oral fat load was delayed when the fasting serum triglyceride was high, but became normal after the serum triglyceride had been reduced by diet. An oral glucose load showed impairment of glucose tolerance. Insulin resistance was suggested by a small decrease in plasma glucose, with a normal increase in serum insulin, after intravenous tolbutamide. Serum triglyceride and pre-β-lipoprotein concentrations increased after oral glucose. Observations in two other children with diabetic glucose tolerance curves suggested that the increase in serum triglyceride after oral glucose was related to the insulin response rather than to the degree of hyperglycaemia.

The term carbohydrate-induced hypertriglyceridaemia was introduced by Ahrens et al. (1961) to distinguish a type of hypertriglyceridaemia which responds to reduction in dietary carbohydrate; the triglyceride is endogenously synthesized and carried in the serum in pre-β-lipoprotein. This lipoprotein abnormality, which corresponds to Type IV hyperlipoproteinaemia in the classification of Fredrickson, Levy, and Lees (1967), may be secondary to other diseases such as diabetes mellitus or glycogen storage disease, but has also been reported as a 'primary' abnormality in adults. However, the 'primary' abnormality has not yet been described in childhood, the youngest affected subjects in the family studies of Fredrickson et al. (1967) being over 20 years of age. We report our investigations and treatment of a 12-year-old boy with the disorder, and describe an abnormal serum triglyceride response to an oral glucose load in this patient and also in a child with latent diabetes mellitus.

Subjects and Methods

The patient (Case 1) was a prepubertal 12-year-old boy. Two years previously his father had died at the age of 34 years from a myocardial infarction and from that time the boy had developed a severe anxiety state. Physical examination showed no abnormality (weight 75th centile, height between 50th and 75th centiles), and his symptoms settled during his hospital admission and have not recurred. The father's serum cholesterol was reported as 265–300 mg./100 ml., but his serum triglyceride and lipoprotein pattern are unknown. In the mother and a 10-year-old sister serum total lipid and cholesterol were determined 5 hours after a light breakfast, and found to be normal. The lipoprotein pattern was normal in the mother, though in the sister a faint pre-β-lipoprotein band was present.

Dietary studies were carried out, and the composition of the diets is given in Fig. 1. During period (A) he was hungry and therefore the calorie intake was increased and thereafter kept constant. During the periods of high carbohydrate feeding (A), (B), and (D), 75% of the carbohydrate was sucrose; during period (E) no sucrose was given and 75% of the carbohydrate was glucose; the remaining carbohydrate was starch and lactose. Serum lipids after an oral fat load (2·2 g./kg. body weight in a mixed meal after an overnight fast), plasma post-heparin lipolytic activity, and the response to intravenous tolbutamide (1 g. as the

Received 3 June 1969.

*A preliminary report of part of this work has been presented to the British Paediatric Association (Segall. 1967).
sodium salt in a 5% w/v solution in water given over 2 minutes) were also determined. Oral glucose loads were given to Case 1 and to two other children: a 9-year-old, mildly obese girl (Case 2; weight between 50th and 75th centiles, height 3rd centile), who two years earlier had an episode of hyperglycaemia and hyperlipidaemia during an acute illness, and a 12-year-old boy (Case 3) with pancreatic hypoplasia. Glucose (1.75 g./kg. body weight, up to a maximum of 50 g.) was given in a 25% w/v solution in water after an overnight fast, and changes in plasma glucose and non-esterified fatty acids (NEFA), and serum insulin, triglyceride, and lipoprotein pattern were observed.

Venous blood was used for all estimations and was taken after an overnight fast, except during the period of out-patient follow-up when it was taken about 4 hours after a standardized breakfast. Heparinized blood for plasma glucose and NEFA was cooled in ice and the plasma separated within half an hour.

Serum triglyceride was estimated in Case 1 by infrared absorptiometry (Freeman, 1964), with the exception of the first oral glucose load when it was estimated colorimetrically (Blankenhorn, Rouser, and Weimer, 1961); in Cases 2 and 3 serum triglyceride was estimated by quantitative gas-liquid chromatography (Fosbrooke and Tamir, 1968). Serum total cholesterol was estimated by a Lieberman-Burchard (Brown, 1961) or an Autoanalyser method (Technicon method N-24a); serum phospholipid (lipid phosphorus \times 25) by a modification of the method of Bartlett (1959); serum total lipid by a turbidimetric method (De la Huerga, Yesnick, and Popper, 1953); plasma post-heparin lipolytic activity by the method of Fredrickson, Ono, and Davis (1963); plasma glucose by a glucose oxidase method (Boehringer Corporation, 1968); plasma NEFA by the titration method of Dole and Meinertz (1960); and serum insulin by a modification (Grant, 1967) of the immunoneassay procedure of Morgan and Lazarow (1963). Serum lipoproteins were separated by paper electrophoresis (Salt and Wolff, 1957).

Results

On the self-selected diet Case 1’s serum was slightly turbid, the triglyceride concentration was 307 mg./100 ml. (normal range 56–121 mg./100 ml., obtained in 6 healthy children and 8 young adults) and a marked pre-\(\beta\)-lipoprotein band was present on paper electrophoresis (Fig. 2); the serum cholesterol and phospholipid (197 mg./100 ml. and 208 mg./100 ml., respectively) were normal. The effect of different diets on the fasting serum triglyceride and cholesterol is shown in Fig. 1. When the carbohydrate was restricted to 38% of total calories (periods (C) and (F)), the serum triglyceride decreased to normal. When the carbohydrate was increased to 78% of total calories in periods (B), (D), and (E) the serum triglyceride was increased only slightly above the level on his self-selected diet. During period (A) when the calorie intake was insufficient the serum triglyceride decreased despite the high proportion of carbohydrate. When glucose was substituted for sucrose in period (E) the hypertriglyceridaemia persisted. A marked pre-\(\beta\)-lipoprotein band was present during the periods of high carbohydrate feeding and disappeared during carbohydrate restriction (Fig. 2).
Carbohydrate-induced Hypertriglyceridaemia in a Child

FIG. 2.—Effect of different diets on the serum lipoproteins (separated by paper electrophoresis). The letters B-F refer to the dietary periods shown in Fig. 1.

TABLE I

Intravenous Tolbutamide Test

<table>
<thead>
<tr>
<th>Minutes After Tolbutamide</th>
<th>Plasma Glucose (mg./100 ml.)</th>
<th>Plasma Glucose (% basal concentration)</th>
<th>Serum Insulin (µunits/ml.)</th>
<th>Plasma NEFA (mEq/l.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
<td>Normal* (mean and range)</td>
<td>Case 1</td>
<td>Normal* (mean and range)</td>
</tr>
<tr>
<td>0 (fasting)</td>
<td>103</td>
<td>100</td>
<td>6</td>
<td>7 (3-13)</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>87 (63-76)</td>
<td>31</td>
<td>43 (16-85)</td>
</tr>
<tr>
<td>30</td>
<td>72</td>
<td>70 (46-56)</td>
<td>14</td>
<td>19 (4-34)</td>
</tr>
<tr>
<td>60</td>
<td>72</td>
<td>70 (64-80)</td>
<td>10</td>
<td>10 (2-15)</td>
</tr>
<tr>
<td>90</td>
<td>98</td>
<td>95 (82-86)</td>
<td>7</td>
<td>17 (9-25)</td>
</tr>
</tbody>
</table>

*Three children aged 9–13 years with normal oral glucose tolerance and a decrease of plasma glucose after tolbutamide (25 mg./kg. body weight, to a maximum of 1 g.) which was normal according to the criteria of Unger and Madison (1958). The insulin responses are similar to those found by Chiumello, del Guercio, and Bidone (1968).
The serum cholesterol did not alter appreciably during the study.

Plasma post-heparin lipolytic activity was normal (0.56 μEq NEFA/min. per ml.). The response to an oral fat load varied with the fasting serum triglyceride concentration (Fig. 3); when the serum triglyceride was high, clearing of the ingested lipid from the serum was delayed, whereas after the serum triglyceride had been lowered by carbohydrate restriction clearing occurred at a normal rate.

The decrease in fasting plasma glucose after intravenous tolbutamide was abnormally small, though the increase in serum insulin was normal (Table I).

The effect of long-term treatment with a low carbohydrate diet and clofibrate (1 g./day) is shown in Fig. 4. The diet contained 150 g. carbohydrate per day, which accounted for about 25% of total calories; about 20% of the carbohydrate was sucrose. With the diet alone the serum triglyceride varied from 139–385 mg./100 ml., whereas with the addition of clofibrate all the values observed except one were between 151–173 mg./100 ml. A marked pre-β-lipoprotein band was present when the serum triglyceride was high.

Oral glucose loads. The results of oral glucose loads on the three children (Cases 1, 2, and 3) are given in Table II. The first test on Case 1 was performed during his final in-patient period when he was receiving 225 g. carbohydrate daily (38% of calories). Glucose tolerance was impaired, the plasma glucose at 2 hours being 142 mg./100 ml. The increase in serum insulin and decrease in plasma NEFA were normal. The serum triglyceride increased from 119 mg./100 ml. to 156 mg./

![Graph showing clearing of lipid from the serum after an oral fat load.](http://adc.bmj.com/)

Fig. 3.—Clearing of lipid from the serum after an oral fat load.

100 ml. at 1 hour, and this was accompanied by the appearance of pre-β-lipoprotein (Fig. 5); this response is abnormal. After 8 months of treatment with the low carbohydrate diet a second glucose load showed that there was no deterioration in glucose tolerance and that the serum triglyceride

Table: Oral Glucose Load

<table>
<thead>
<tr>
<th>Minutes After Glucose</th>
<th>During Period (F) of Moderate Carbohydrate Intake (225 g./day)</th>
<th>After 8 Months on Low Carbohydrate Intake (150 g./day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasma Glucose (mg./100 ml.)</td>
<td>Plasma NEFA (mEq/l.)</td>
</tr>
<tr>
<td>0 (fasting)</td>
<td>92</td>
<td>1.86</td>
</tr>
<tr>
<td>30</td>
<td>175</td>
<td>0.79</td>
</tr>
<tr>
<td>60</td>
<td>193</td>
<td>0.36</td>
</tr>
<tr>
<td>90</td>
<td>153</td>
<td>0.34</td>
</tr>
<tr>
<td>120</td>
<td>142</td>
<td>0.25</td>
</tr>
<tr>
<td>150</td>
<td>78</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*Child with latent diabetes mellitus and mild obesity.
†Child with pancreatic hypoplasia.
Carbohydrate-induced Hypertriglyceridaemia in a Child

Discussion

The lipoprotein abnormality in Case 1 corresponds to Type IV hyperlipoproteinaemia described by Fredrickson et al. (1967) in adults, and its correction by low carbohydrate feeding and exacerbation by high carbohydrate feeding fulfil the criteria for carbohydrate-induced hypertriglyceridaemia. Fredrickson et al. (1967) have reported the familial occurrence of this type of hyperlipoproteinaemia. The child's father, who died at the age of 34 years from a myocardial infarction, had a moderately increased serum cholesterol concentration, and though we do not know his serum triglyceride and lipoprotein pattern, this degree of hypercholesterolaemia is consistent with an increase in pre-β-

Table

<table>
<thead>
<tr>
<th>Case 2*</th>
<th>Case 3†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Glucose (mg./100 ml.)</td>
<td>Plasma NEFA (mEq/l.)</td>
</tr>
<tr>
<td>77</td>
<td>1·00</td>
</tr>
<tr>
<td>206</td>
<td>0·88</td>
</tr>
<tr>
<td>229</td>
<td>0·48</td>
</tr>
<tr>
<td>201</td>
<td>0·35</td>
</tr>
<tr>
<td>120</td>
<td>0·18</td>
</tr>
<tr>
<td>91</td>
<td>0·17</td>
</tr>
</tbody>
</table>
lipoprotein. It is also possible that the faint pre-β-lipoprotein band found in the sister of Case 1 indicates the same abnormality.

Despite the patient's good response to carbohydrate restriction in hospital, his long-term management at home with diet alone was unsatisfactory. Clofibrate (ethyl-a-p-chlorophenoxyisobutyrate) is reported to lower the serum triglyceride in this type of hyperlipoproteinaemia (Oliver, 1967). We did not use this drug alone in our patient, but when it was combined with dietary treatment reasonable control of his serum triglyceride was achieved at home. The findings of delayed clearing of lipid from the serum after a fat meal when pre-β-lipoprotein triglyceride was high, and of normal clearing when the triglyceride had been reduced, are in keeping with the observation of Nestel (1964) in adults that the rate of removal of chylomicron triglyceride is inversely proportional to the fasting plasma triglyceride concentration. Reaven et al. (1965) have shown that the capacity for clearing pre-β-lipoprotein triglyceride becomes readily saturated. The delayed clearing of chylomicron triglyceride when pre-β-lipoprotein triglyceride is raised suggests that the triglyceride in both lipoproteins is removed by the same clearing mechanism. The finding in our patient of normal plasma post-heparin lipolytic activity indicates that lipoprotein lipase (the enzyme responsible for hydrolysis of lipoprotein triglyceride) is present, and that the clearing defect is probably due to an excess of substrate rather than to a lack of enzyme.

Carbohydrate-induced hypertriglyceridaemia results from increased hepatic synthesis of triglyceride, which is secreted into the serum in pre-β-lipoprotein. Impaired glucose tolerance is commonly found in adults with the condition (Kane et al., 1965; Fredrickson et al., 1967), and the increased hepatic synthesis of triglyceride probably results from hyperinsulinaemia (Reaven et al., 1967) secondary to insulin resistance (Davidson and Albrink, 1965). In Case 1, who had impaired oral glucose tolerance, some degree of insulin resistance may be inferred, since after intravenous tolbutamide only a small decrease in plasma glucose occurred despite a normal rise in serum insulin. A similar abnormality in the intravenous tolbutamide test has been found in adults with carbohydrate-induced hypertriglyceridaemia (Knittle and Ahrens, 1964).

In normal subjects a small decrease in serum triglyceride occurs after an oral glucose load (Rubenstein et al., 1969); the increase found in Case 1 appears to be a new observation in carbohydrate-induced hypertriglyceridaemia. In our other patients, both of whom had diabetic glucose tolerance curves, the serum triglyceride increased in Case 2 in association with her high insulin response, and decreased in Case 3 in association with his low insulin response. This difference in response suggests that the increase in serum triglyceride after oral glucose is related to the insulin response rather than to the degree of hyperglycaemia.

The diagnosis of carbohydrate-induced hypertriglyceridaemia is best made by showing a decrease in the fasting serum triglyceride on low-carbohydrate feeding. The finding of an increase in serum triglyceride on high-carbohydrate feeding is not diagnostic of the condition because such a response is normal in both children (Segall et al., 1969).
Carbohydrate-induced Hypertriglyceridaemia in a Child

et al., 1970) and adults (Lees and Fredrickson, 1965). However, in subjects in whom fasting serum triglyceride concentrations are not clearly abnormal, the magnitude of the increase in triglyceride after high-carbohydrate feeding may prove useful in diagnosis, as may also the triglyceride response to an oral glucose load.

We would like to thank Dr. T. H. Hughes-Davies for referring Case 1, Dr. D. B. Grant and Mrs. D. Jackson for the serum insulin estimations, and the staff of the Dietetic Department, The Hospital for Sick Children, Great Ormond Street, for their help. M.M.S. was in receipt of a fellowship from the Wellcome Trust.

References

Correspondence to Dr. June K. Lloyd, Institute of Child Health, 30 Guilford Street, London W.C.1.
Carbohydrate-induced Hypertriglyceridaemia in a Child

M. M. Segall, Audrey S. Fosbrooke, June K. Lloyd and O. H. Wolff

Arch Dis Child 1970 45: 73-79
doi: 10.1136/adc.45.239.73

Updated information and services can be found at:
http://adc.bmj.com/content/45/239/73

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/