blood and urine from patients with homocystinuria indicate that the desulphhydrase pathway is not sufficiently active to prevent homocysteine and methionine accumulation in vivo. Since the experiments on 35S-methionine incorporation described above measured only incorporation of 35S into protein, it is possible that cysteine synthesized by the desulphhydrase pathway is incorporated into protein preferentially to pre-existing cysteine in metabolic pools. Alternatively, the low levels of cystathioninase activity in normal fibroblasts may constitute a block in conversion of methionine sulphur to cysteine sulphur in normal cells, even though cystathionine synthetase activity is adequate.

Application of Test of Adrenocortical Sensitivity to Bioassay of ACTH and to Assessment of Possible Altered Adrenocortical Sensitivity.

M. Friedman (Clinical Research Centre, Northwick Park, and University College Hospital, London). The administration of pharmacological quantities of ACTH followed by the measurement of plasma or urinary steroid levels is the basis of all currently used tests of adrenal function. A test based on the administration of physiological amounts (nanogram quantities) of synthetic ACTH compounds has been devised to test adrenal sensitivity (Landon et al., 1967). This procedure has proved to be valuable for assaying corticotrophin activity in man, and for assessing adrenocortical sensitivity in children receiving prolonged ACTH therapy.

A recently synthesized analogue of corticotrophin, the pentacosapeptide d-serine-norleucine-valinamide23-B120 corticotrophin (DW-75: Sandoz) was found to have an activity of 625 i.u./mg. when assayed by the rat adrenal ascorbic acid depletion test of Sayers. The assay value obtained by this compound using the Sayers test was five times that obtained for synthetic porcine corticotrophin and the tetracosapeptide synacthen (Ciba). D.W.-75 has been administered to human subjects in pharmacological and physiological concentrations and the adrenal response was measured. The results indicate that on a weight for weight basis, D.W.-75 has similar duration of action and adrenal stimulating properties to other synthetic polypeptides with adrenocorticotropic action. These findings suggest that the assay values based on adrenal ascorbic acid depletion test obtained with polypeptides having corticotrophin-like activity bear little relation to the behaviour of these preparations when administered to man.

Adrenocortical sensitivity was assessed in a group of children who had been treated with ACTH for prolonged periods because of the possibility of altered adrenocortical responsiveness as a result of repeated stimulation. The results indicate neither increased nor decreased adrenocortical sensitivity as a result of prolonged adrenal stimulation with exogenous ACTH.

Mechanism of Bronchial Constriction in Asthma.

R. S. Jones (Institute of Child Health, Liverpool). The lability index was measured in 24 normal subjects aged 20-35 years and found to be between 4 and 21% with a mean of 12%. The lability index measures the tendency of the bronchi to dilate and constrict, using the FEV as an index of airway resistance. Figures less than 20% are regarded as normal. On another day each subject was given 100 mg. of propranolol by mouth, 40 minutes before a repeat measurement of lability. There was a significant increase in lability for the group as a whole (range 6-42%; mean 18%; p < 0.01). When the criteria for defining asthma in terms of lability were applied, 8 subjects had moved into the asthmatic range. The difference in lability for this group, with and without propranolol, was highly significant (p < 0.01). In the group formed by the remaining 16 subjects, there was no significant difference. The pattern of bronchoconstriction after exercise in the group of 8 was exactly similar to that found in asthma.

In the normal subject at rest, muscle cell receptor activity causing relaxation (R) must exceed receptor activity causing constriction (C), since the bronchiolies are almost fully dilated and stable. No constriction occurs after β-blockade at rest, so R must still exceed C, despite the smaller value of R.

On exercise, when constriction occurs after blockade, C must exceed R. Hence, enhanced activity (C) of undefined receptors must occur on exercise. In the absence of blockade, this activity results in minimal or no bronchoconstriction because it is opposed by the intact adrenergic mechanism.

The fact that 40% of asthmatics develop constriction at rest after propranolol indicates that they are dependent upon β-receptor activity for the prevention of constriction to a degree which the normal subject is not dependent. β-receptor activity is probably enhanced in the asthmatic therefore, but it may not be sufficient to maintain full dilatation at rest. β-receptor activity in these is presumably opposed by constrictor receptors activated by histamine or ‘H’-like substances.

Post-exercise bronchoconstriction in asthma may not be due to an abnormal mechanism during exercise, but to the normal constrictor mechanism on exercise operating on a bronchus which is less stable than normal due to histamine or ‘H’-like substances.

The phenomenon of abnormal lability, which is the determinant of clinical asthma, may therefore depend upon two mechanisms: (1) constriction due to activation of receptors by substances released after an allergic reaction, and (2) an inherently less stable bronchial tree which renders the individual vulnerable should an allergic reaction occur.

Muramidase (Lysozyme) Excretion in Children.

T. M. Barratt and R. Crawford (Department of Immunology, Institute of Child Health, London). (Introduced by J. Lloyd). Lysozyme is a low molecular weight protein (14,000) that is synthesized by granulocytes and liberated

REFERENCE

Application of test of adrenocortical sensitivity to bioassay of ACTH and to assessment of possible altered adrenocortical sensitivity.

M. Friedman

Arch Dis Child 1969 44: 780
doi: 10.1136/adc.44.238.780

Updated information and services can be found at:
http://adc.bmj.com/content/44/238/780.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/