Effect of Acute Hypoxia on Blood Pressure and Electroencephalogram of Newborn Babies

N. R. C. ROBERTON*

From the Nuffield Neonatal Research Unit, Hammersmith Hospital, London

Our current practice in the management of respiratory problems in the newborn baby, including those born prematurely, is directed towards maintaining arterial Po_2 within the normal range for the immediate neonatal period (60–90 mm. Hg), even if high environmental oxygen concentrations are required (Roberton et al., 1968). By this means it is hoped to prevent the increased mortality associated with restricted oxygen usage (Avery and Oppenheimer, 1960) and possibly to limit the incidence and severity of brain damage in survivors (McDonald, 1963; 1967).

The evidence relating arterial hypoxaemia to subsequent neurological deficit is, however, tenuous. There are no studies of neurological deficit in relation to blood gas tensions in newborn babies, and in McDonald’s retrospective study of neonatal oxygen therapy and cerebral motor defect it is only in the babies of less than 31 weeks’ gestation who had apnoeic attacks that the incidence of cerebral diplegia was inversely related to the length of oxygen therapy.

It is known that babies suffering from the respiratory distress syndrome (RDS) have a lower blood pressure than normal babies of the same weight (Neligan and Smith, 1960). Recent work on both animals and man (Adams et al., 1966; Brierly and Excell, 1966) has suggested that hypotension, particularly of sudden onset, may be an important factor in the causation of certain types of brain damage.

The neurological responses of newborn babies are largely controlled at a subcortical level, and cortical function is not easily tested except perhaps by the visual responses (Robinson, 1966). The responses of adults with cerebral cortical hypoxia who show dizziness and confusion (Moyer and Morris, 1954) cannot therefore be detected in babies. The EEG is known to be a sensitive indicator of cerebral hypoxia in both adult man and animals (Cahn et al., 1961; Gastaut, Fischgold, and Meyer, 1961). The EEG of the healthy full-term and premature baby has been extensively studied, and criteria of normality, though less well defined than in older children or adults, have been established (Dreyfus-Brisac, 1964; Goldie and Van Velzer, 1965). It, therefore, seemed justifiable to examine it as a possible index of cerebral cortical hypoxaemia in the newborn.

To investigate the relative importance of hypotension and hypoxaemia in causing changes in the EEG, simultaneous recordings of P_{O_2} systemic blood pressure, and EEG were made in newborn babies suffering from the respiratory distress syndrome or recurrent apnoea of prematurity.

Material and Methods

The babies studied were all being artificially ventilated with a positive pressure ventilator (Grausz, Watt, and Becket, 1967) via a naso-endotracheal tube, and at the time of the study were maintaining satisfactory blood gas tensions. Artificial ventilation of newborn babies may be followed by chronic lung disease (Northway, Rosan, and Porter, 1967), and we have encountered considerable problems with retained secretions, in addition to pulmonary infection, tracheal ulceration, and occasionally stenosis. Because of these problems we make frequent attempts to wean these babies off the respirator once satisfactory blood gas tensions are being maintained. These studies were made before and after switching off the respirator in such babies. The endotracheal tube was left in situ and 100% O_2 administered through it. When disconnected from the respirator, the babies were often apnoeic for up to one minute before they started spontaneous respirations. These were sometimes gasping in nature, though they were often regular and shallow but presumably inadequate, as EEG and P_{O_2} changes occurred. EEG, ECG, and blood pressure measurements were recorded during the procedure, which was regarded as having failed if the EEG became significantly slower or flattened, or if there was obvious clinical deterioration. Arterial blood gas measurements were taken just before the respirator was switched off and again just before the respirator was restarted in cases where 'weaning' had failed.
A 12-channel EEG was recorded from the positions described previously (Goldie and Van Velzer, 1965). Small electrodes were either stuck into the scalp with collodion, or in some cases needle electrodes were used. The ECG was recorded simultaneously on the EEG tracing. For comparison between EEG activity at various periods during the recordings, the percentage activity exceeding 20 μV in any 60-second period was noted. Provided that activity exceeding 20 μV was present in at least one channel, the EEG was regarded as active. In fact, in no case was there gross asymmetry of the record or purely focal activity. Flattenning of the EEG was defined as the absence of any activity exceeding 10 μV. Percentage activity was noted for control tracings taken before the respirator was switched off and for each minute during the time the baby was not being artificially ventilated.

\(P_{aPo} \), \(pH \), and \(P_{aCO_2} \) were measured on blood drawn from an umbilical arterial catheter lying within the abdominal aorta. The blood gases were measured immediately on a I.L. \(pH \)/blood gas analyser which requires only 0.1 ml. blood for all these estimations, and appropriate corrections were made for the baby's body temperature and for the errors due to calibrating the apparatus with gas mixtures instead of blood tonometered with gas mixtures (Roberton et al., 1968).

Blood pressure was recorded directly from the umbilical arterial catheter connected to a pressure transducer which wrote out the blood pressure directly on a Mingograph recorder.

Throughout the investigation the baby remained within the incubator in its own cubicile. The incubator was usually switched off during the recording because of problems of electrical interference but the babies were covered with a radiant heat shield (Hey and Mount, 1966), and their body temperatures did not fall.

Results

Twenty-six babies, all with very severe respiratory insufficiency, were investigated. 13 had virtually no EEG activity initially, even though they had normal blood gas tensions and normal blood pressures on the respirator. 7 of these 13 were of less than 25 weeks' gestation and 800 g. birth-weight, and showed the very low amplitude EEG activity which is seen at this gestation. They had blood pressures in the range 40/25–55/40 mm. Hg, which we would also regard as normal at this maturity. The other 6 babies with inactive EEGs were also premature but of longer gestation—between 28 and 34 weeks and of larger birthweight—between 1200 g. and 1900 g. All 6 had suffered birth asphyxia. They were studied within the first 24 hours of life and had satisfactory blood gas tensions and systemic blood pressures. An inactive EEG in this situation is not incompatible with subsequent

TABLE

Effect on Blood Gases and on EEG of Cessation

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Indication for Respirator Treatment</th>
<th>Age When Respirator Cessation Attempted (hr.)</th>
<th>(P_{aPo}) (mm. Hg) Before</th>
<th>(P_{aPo}) (mm. Hg) After</th>
<th>(pH) Before</th>
<th>(pH) After</th>
<th>(P_{aCO_2}) Before</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apnoeic attacks</td>
<td>26½</td>
<td>63</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>Apnoeic on admission (1)</td>
<td>76</td>
<td>140</td>
<td>11</td>
<td>7·51</td>
<td>7·33</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>218</td>
<td>75</td>
<td>18</td>
<td>—</td>
<td>—</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Apnoeic on admission</td>
<td>6</td>
<td>35</td>
<td>10</td>
<td>7·29</td>
<td>7·29</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Respiratory failure* ? septicaemia</td>
<td>33</td>
<td>106</td>
<td>39</td>
<td>7·57</td>
<td>7·28</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Apnoeic attacks (1)</td>
<td>32½</td>
<td>160</td>
<td>27</td>
<td>7·40</td>
<td>7·22</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>34</td>
<td>140</td>
<td>32</td>
<td>7·40</td>
<td>7·30</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Respiratory failure* (1)</td>
<td>97½</td>
<td>135</td>
<td>27</td>
<td>7·67</td>
<td>7·39</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>98</td>
<td>230</td>
<td>26</td>
<td>7·69</td>
<td>7·38</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Apnoeic attacks (1)</td>
<td>8</td>
<td>65</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>22</td>
<td>58</td>
<td>27</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Apnoeic on admission (1)</td>
<td>10½</td>
<td>68</td>
<td>15</td>
<td>7·40</td>
<td>7·28</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>15</td>
<td>51</td>
<td>12</td>
<td>7·28</td>
<td>7·28</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>Apnoeic attacks</td>
<td>102</td>
<td>60</td>
<td>16</td>
<td>7·36</td>
<td>7·34</td>
<td>16</td>
</tr>
</tbody>
</table>

* Respiratory failure—assessed by progressive acidemia and hypercapnia. IVH, Intraventricular haemorrhage.
of Respirator Treatment and Outcome

<table>
<thead>
<tr>
<th>(mm. Hg)</th>
<th>Blood Pressure (mm. Hg)</th>
<th>% EEG Activity (>20 μV)</th>
<th>Time Off Respirator (min.)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>54</td>
<td>42/30</td>
<td>36/26</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>31</td>
<td>—</td>
<td>—</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>36</td>
<td>66/38</td>
<td>—</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>43</td>
<td>42/30</td>
<td>32/18</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>39</td>
<td>45/ ?</td>
<td>45/ ?</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>55/40</td>
<td>50/40</td>
<td>61</td>
<td>15</td>
</tr>
<tr>
<td>36</td>
<td>50/30</td>
<td>42/20</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>33</td>
<td>—</td>
<td>50/ ?</td>
<td>53</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>48/34</td>
<td>58/46</td>
<td>53</td>
<td>25</td>
</tr>
<tr>
<td>53</td>
<td>52/36</td>
<td>60/40</td>
<td>51</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>40/30</td>
<td>60/40</td>
<td>38</td>
<td>0</td>
</tr>
</tbody>
</table>

survival, and one of this group did survive and is apparently neurologically normal.

Three babies when disconnected from the respirator maintained adequate ventilation and blood gas tensions and their EEG activity was stagnant as was their blood pressure. 2 of the 3 babies subsequently had to be restarted on the ventilator and eventually died, but the other one survived. One other child, who was very hypertensive with a blood pressure of 30/20 mm. Hg, had a moderately inactive EEG which changed very little when the PₐO₂ fell.

The remaining 9 babies had normal blood gas tensions and blood pressures with an active EEG while on the respirator. When they were disconnected from the respirator they were unable to maintain adequate gas exchange. Their arterial Po₂ dropped and the EEG activity decreased. The remainder of this paper is concerned with these 9 babies, details of whom are shown in the Table.

In all, 14 attempts were made to wean these 9 babies off the respirator. All the babies had severe RDS judged on clinical grounds. Only one child survived. 5 of the 8 who died had intra-ventricular haemorrhages, and of the remaining 3, 2 were in very poor condition on admission from outside units and had to be started on a ventilator immediately. The eighth fatality had an undiagnosed haemolytic streptococcal sepsicaemia. It can be seen that in all cases there was a drop in PₐO₂ to levels less than 40 mm. Hg and a fall in the percentage activity of the EEG, which in some cases became virtually flat. The longest time a baby was disconnected from the respirator was 8 minutes, and most babies had a significant decrease in activity within 4-5 minutes. The usual course of events was that from a normally active EEG (Fig. 1) there was marked slowing of the tracing (Fig. 2), followed by decrease in electrical activity (Fig. 3). In 8 out of the 14 attempts, the PₐO₂ at the end of the attempt to wean the child off the respirator was less than 20 mm. Hg. Fig. 4 shows that there is a significant correlation between the PₐO₂ and the percentage activity of the EEG. We excluded from the analysis those recordings where the PₐO₂ was more than 100 mm. Hg; PₐO₂ values greater than normal are not likely to increase EEG activity.

Throughout the period of EEG slowing there was never any consistent change in the blood pressure. In some cases there was a fall of up to 10 mm. Hg in the systolic pressure, but in others there was a rise of up to 20 mm. Hg. The pH and PₐCO₂ values did not change significantly, and usually
remained within the normal range. If there was any significant change it was usually in the direction of correcting an abnormally high pH and correspondingly low $P_{\text{a}CO_2}$ caused by overventilation, changes that are more likely to increase the cerebral blood flow and therefore maintain cerebral oxygenation and the EEG activity.

In all cases when the child was reconnected to the respirator the blood gas tensions and the EEG activity returned to normal within 10 minutes and usually within 3 minutes.

Discussion

The effect of hypoxia on the EEG of animals and adult human beings is well established, being an initial slowing of the activity progressing eventually to electrical silence (Gastaut et al., 1961). The levels of PO_2 at which EEG flattening occurs are
not well established. The most quoted figure in humans is that at a jugular venous Po2 of 20 mm. Hg usually irrespective of the time taken to lower it to that level, slowing of the EEG takes place (Meyer, Gotoh, and Favale, 1965b; Meyer et al., 1965a; Meyer and Gotoh, 1964). There is, however, very little known on the arterial Po2 values associated with EEG changes, but Meyer et al. (1965a) found that EEG slowing took place at a PaO2 of between 20 and 40 mm. Hg.

It is also known that in fetal rhesus monkeys approaching term the EEG is composed of low amplitude slow waves of 0.5–1.5 cycle/sec. duration (Robert de Ramirez de Arellano, 1964). (In this species the umbilical arterial Po2 is 20 mm. Hg (Dawes, 1968) and the carotid PaO2 will presumably be slightly higher.) The activity and amplitude of the EEG rapidly increases after the newborn monkey takes its first gasp, and presumably coincides with the increasing arterial Po2.

The effect of lowering the blood pressure seems also to be largely a matter of hypoxia (Meyer et al., 1965b; Moyer and Morris, 1954; Brierly and Excell, 1966; Schneider, 1963). On lowering the blood pressure, slowing of the EEG and cerebral dysfunction (Moyer and Morris, 1954) only take place when the jugular venous Po2 drops below about 20 mm. Hg. This follows a steadily increasing cerebral AV O2 difference (Meyer et al., 1965a), which suggests that more oxygen is being extracted from the blood perfusing the brain at steadily decreasing blood pressure. Sudden onset of complete cerebral anoxia due to cessation of the cerebral circulation during cardiac surgery in infancy (Harden, Pampiglione, and Waterston, 1966; Thies-Puppel and Wiemers, 1961) or in Adams-Stokes attacks (Regis, Toga, and Righini, 1961) is associated with flattening of the EEG within one minute, and it is worth remembering that in heart surgery the EEG can be flat for at least 8 minutes, with complete recovery (Thies-Puppel and Wiemers, 1961).

Meyer et al. (1962) have shown in experiments on monkeys that cerebral tissue Po2 must be
N. R. C. Robertson

reduced from a normal of 26 mm. Hg (mean) to 10 mm. Hg before EEG slowing occurs and to even lower values for flattening.

The physiology of these EEG changes seems to be that when hypoxia occurs, cerebral metabolism decreases, as measured by a decreased jugular venous PCO_2 (Meyer and Gotoh, 1964), the sodium pump in the nerve cells fails as evidenced by a low Na^+ and rising K^+ in jugular venous blood, and so neuronal repolarization cannot take place (Meyer et al., 1965a).

From our own studies it appears that the newborn baby's brain responds to hypoxia at least in terms of EEG activity in a similar way to the adult human and to the experimental animal, by showing an initial slowing of the activity followed by electrical silence. In one baby who was very hypotensive but adequately oxygenated, EEG activity was present; the 9 babies who showed EEG flattening had severe hypoxia but maintained their blood pressure; it seems likely, therefore, that, as in the adult, hypotension only causes EEG slowing when severe enough to cause cerebral hypoxia.

The $\text{P}_\text{A}O_2$ level at which cerebral hypoxia takes place must obviously depend on the cerebral blood flow and the factors that influence it, such as blood pressure, pH, and $\text{P}_\text{a}CO_2$. The exact level of $\text{P}_\text{A}O_2$ at which slowing and then flattening occurs could only be observed if a method for continuous $\text{P}_\text{a}O_2$ recording such as an extracorporeal shunt were used. We have seen babies with severe RDS who have had normal EEGs at a $\text{P}_\text{a}O_2$ of approximately 40 mm. Hg—indeed 1 of the 9 in this series started with a $\text{P}_\text{a}O_2$ of 35 mm. Hg and an active EEG, and we know that children with cyanotic congenital heart disease can be of normal intellect with arterial Po_2 values in this range, though older children may show non-specific changes in their EEGs (Kohner et al., 1967).

However, at least one of our babies developed marked EEG flattening at a $\text{P}_\text{A}O_2$ of 39 mm. Hg, and in several other babies one must assume that, as considerable slowing of the EEG had taken place some 1–2 minutes before the final $\text{P}_\text{A}O_2$ reading shown in the Table, the $\text{P}_\text{A}O_2$ was then higher and in the 35–40 mm. Hg range. As levels of approximately 40 mm. Hg can be associated with a normal EEG, and yet falls from high-normal values to the 40 mm. Hg range are associated with EEG flattening, this suggests that sudden changes in $\text{P}_\text{A}O_2$ may be more damaging than a gradual decline to a low level. This may explain McDonald's figures for severer CNS sequelae in children surviving cyanotic attacks than in other groups, and provides further reasons why apnoeic attacks are to be avoided. It appears reasonable, nevertheless, to suggest 40 mm. Hg as the danger level below which the $\text{P}_\text{A}O_2$ should not be allowed to fall.

The duration of EEG flattening inevitably associated with permanent cerebral damage is not known, but the brain of the newborn mammal is more resistant to hypoxaemia than that of older animals.

The fetal brain develops normally at abnormally low $\text{P}_\text{A}O_2$ levels, and the work of Robert de Ramirez de Arellano (1964) suggests that low amplitude EEGs are normal in the fetus. However, it is not known what additional metabolic requirements of the brain become obligatory after birth. Until this is known it seems unwise to allow the EEG of the neonate to flatten or even to revert to the fetal pattern.

Summary

The EEG of the newborn baby responds to hypoxaemia in a similar way to that of an adult.

In periods of respiratory failure with hypoxaemia in the neonatal period the blood pressure is sustained as the EEG changes occur and $\text{P}_\text{A}O_2$ falls. There is some evidence that acute changes in the $\text{P}_\text{A}O_2$ are likely to be more damaging than gradual ones in terms of cerebral function.

I would like to thank Professor J. P. M. Tizard and Dr. R. J. Robinson for their help in the preparation of this paper; The Sir William Coxon Trust Fund and The British Epilepsy Association for providing assistance; Sister M. E. Castle and the Sisters of the neonatal ward and Misses U. Svendsen and J. Curtis who helped with some of the EEG recordings.

References

Effect of Acute Hypoxia on Blood Pressure and Electroencephalogram of Newborn Babies 725

Correspondence to Dr. N. R. C. Roberton, 57 Kelburne Road, Cowley, Oxford.

Reprint requests to Hammersmith Hospital, London W.12.
Effect of acute hypoxia on blood pressure and electroencephalogram of newborn babies.

N. R. Roberton

Arch Dis Child 1969 44: 719-725
doi: 10.1136/adc.44.238.719

Updated information and services can be found at:
http://adc.bmj.com/content/44/238/719.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/