Dissecting Microscope Appearance of Small Bowel Mucosa in Children

JOHN WALKER-SMITH
From Professorial Unit, Royal Alexandra Hospital for Children, Camperdown, Sydney, N.S.W., Australia

The technique of small bowel biopsy is now well established in childhood, but reports have largely concentrated on the histological appearances and enzyme activity of the biopsied mucosa (Anderson and Townley, 1962; Burke, Kerry, and Anderson, 1965; Kerpel-Fronius, Jáni, and Fekete, 1966; Kuitunen, 1966; Launiala, Kuitunen, and Visakorpi, 1966; Nordio, Lamedica, Berio, and Vignola, 1966; Townley, Khaw, and Shwachman, 1965). While the value of examination of the biopsied mucosa with the dissecting microscope has been demonstrated in adult patients, few paediatric papers have stressed its value (Burman, 1965; Sheldon and Tempany, 1966; Shmerling, 1965; Stanfield, Hut, and Tunnicliffe, 1965). The purpose of this paper is to record the dissecting microscope appearances of 36 duodenal or jejunal biopsies from Australian children with the malabsorption syndrome or chronic diarrhoea.

Material and Method

The small bowel biopsies were performed using the paediatric Crosby capsule (Crosby and Kugler, 1957).

The site of the capsule at the time of biopsy was assessed by taking an x-ray film of the abdomen shortly after the injection of 5 ml. ‘Urografin’ through the biopsy tubing. The biopsies were taken from the distal duodenum or the proximal jejunum. Within five minutes of obtaining the biopsy, the mucosa was placed in 10% formol saline and examined under the dissecting microscope. For purposes of record, black-and-white and colour photographs were taken. The mucosa was then sectioned for histological study.

Examinations were made of 36 biopsies from 32 children. The indications for biopsy were the presence of malabsorption or a history of chronic diarrhoea. The ages of the children at the time of biopsy ranged from 3 months to 13 years. 27 children were of European stock, 5 were Aboriginal or part-Aboriginal. Repeat biopsies to assess progress were performed in 4 children. Control biopsies from normal children were not obtained.

Dissecting Microscope Appearances

The mucosa, when viewed under the dissecting microscope, was assessed and placed in one of three descriptive categories, modified from Booth, Stewart, Holmes, and Brackenbury (1962).

Group I. The mucosal surface was flat and no villi were seen. Two types of appearance were observed: Type 1: The mucosa was absolutely flat and barren with no pits or grooves. In some biopsies, blood vessels could be seen beneath the surface (Fig. 1 and colour plate A). Type 2: The mucosa was flat but divided by grooves into irregular areas. These areas were pitted with the openings of crypts. This appearance has been described as a ‘mosaic’ pattern (Fig. 2 and colour plate B).

Group II. The mucosa showed thickened blunt ridges, but no villi were seen. This appearance has been described as ‘convoluted’ and ‘brain-like’ (Fig. 3 and colour plate C). In one biopsy the mucosa was, in addition, divided into irregular areas by grooves similar to Group I.

Group III. The mucosa was made up of leaf-like villi. These villi had broad bases which varied considerably in width (Fig. 4 and 5 and colour plate D and E). In some biopsies, occasional finger-like villi were seen.

Results

Thirteen children (Table I) had a flat mucosa, 5 being completely flat and the remaining 8 conforming to Group I (Type 2). Each biopsy had the histological appearance of subtotal villous atrophy. All these children had untreated coeliac disease.

Seven specimens from 6 children (Table II) were characterized by thickened ridges. All showed the histological appearance of partial villous atrophy. One child (Case 14) had been treated for coeliac disease with a gluten-free diet for one month at the time of the initial biopsy. The biopsy was still abnormal four months later. In 4 of the remaining children, gastro-enteritis had preceded the develop-
Dissecting Microscope Appearance of Small Bowel Mucosa in Children

TABLE I
Cases in which Pattern of Small Intestine Biopsy was Flat Mucosa

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age (yr.)</th>
<th>Histology</th>
<th>Biopsy Site</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5½</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>2</td>
<td>2 7/12</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>3</td>
<td>7 8/12</td>
<td>SVA</td>
<td>Duodenum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>4</td>
<td>1 11/12</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>5</td>
<td>2½</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>7</td>
<td>3 5/12</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>8</td>
<td>13/12</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>9</td>
<td>5 7/12</td>
<td>SVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>10</td>
<td>5½</td>
<td>SVA</td>
<td>Duodenum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>11</td>
<td>2½</td>
<td>SVA</td>
<td>Duodenum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>12</td>
<td>7 2/12</td>
<td>SVA</td>
<td>Duodenum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>13</td>
<td>8 5/12</td>
<td>SVA</td>
<td>Duodenum</td>
<td>Coeliac disease</td>
</tr>
</tbody>
</table>

SVA = Subtotal villous atrophy.

TABLE II
Cases in Which Pattern of Small Intestine Biopsy was Thickened Ridges

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age (yr.)</th>
<th>Histology</th>
<th>Biopsy Site</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>14*</td>
<td>2</td>
<td>PVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>14</td>
<td>2 4/12</td>
<td>PVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>15</td>
<td>1 7/12</td>
<td>PVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>16*</td>
<td>2</td>
<td>PVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>17</td>
<td>2½</td>
<td>PVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>18</td>
<td>14/12</td>
<td>PVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
<tr>
<td>19*</td>
<td>13/12</td>
<td>PVA</td>
<td>Jejunum</td>
<td>Coeliac disease</td>
</tr>
</tbody>
</table>

PVA = Partial villous atrophy.

*Cases 14, 16, and 19 were Aboriginal or part-Aboriginal.

In one, there was infestation with *Giardia lamblia*.

In Group III were placed 16 biopsies from 13 children (Table III). 14 of these biopsies were assessed as being within normal limits histologically, i.e. the mucosa showed villi of normal height without increased depths of crypts, the epithelium of the villi was columnar in appearance, with basal nuclei, and there was no increase in inflammatory cells in the lamina propria and no oedema. 2 biopsies had normal villous architecture, but there was infiltration of the lamina propria with inflammatory cells. 4 children had chronic diarrhoea, and the remainder had evidence of malabsorption (fatty acid crystals in stool, sugar in stool, etc.). 4 of these had a clear-cut history of antecedent gastro-enteritis. One child was infested with

Giardia lamblia, and another grew salmonella from stool culture at time of biopsy.

In this series, no biopsy had the dissecting microscope appearance which has been said to be characteristic of the jejunal mucosa of normal adults and neonates, i.e. mucosa where finger-like villi are the principal feature (Baker, Ignatius, Mathan, Vaish, and Chacko, 1962; Booth et al., 1962).

Discussion

The presence of a flat mucosa in coeliac disease is well known, but the significance, if any, of the two patterns observed remains obscure. The appearance of 'partial villous atrophy' on histological section in patients with a thick-ridged convoluted mucosa has been demonstrated in adults. However, the significance of leaf-shaped villi remains uncertain.

While leaf-like villi may be seen in the duodenum of healthy adults, Booth et al. (1962) have suggested that leaf-like villi in the jejunum may represent a transition from the finger-like villi seen in normal
Fig. 1.—*Flat mucosa, type 1.*

Fig. 2.—*Flat mucosa, type 2.*

Fig. 3.—*Thickened ridges.*

Fig. 4.—*Leaf-like villi.*

Fig. 5.—*Leaf-like villi.*
Dissecting Microscope Appearance of Small Bowel Mucosa in Children

Dissecting Microscope Appearance of Small Bowel Mucosa in Children

Adults to the abnormal mucosa of coeliac disease. Creamer (1964) has postulated that the shape of the villi is related to the size of the epithelial cell population which may be diminished from various causes. When this diminution in mature epithelial cell population occurs, the appearance of leaf-like villi is the first change to be apparent in the mucosa. This appearance has been described in children with kwashiorkor, where villi in the shape of ridges and leaves with an increased cellular infiltrate of the lamina propria have been described by Burman (1965). He has also described the mucosal appearance of 15 biopsy specimens from English children with a variety of gastro-intestinal symptoms: 48% of the villi seen were leaf-like. However, whether or not this appearance is abnormal remains uncertain.

The lack of biopsies from normal controls is regrettable, but at present it seems unethical to take biopsy specimens of the mucosa of normal healthy children. It is of interest, however, that leaf-like villi were seen in 16 children in this series, all of whom had evidence of malabsorption or had chronic diarrhoea. 4 biopsies were duodenal and, by adult standards, may be within normal limits, but the significance of leaf-shaped villi in jejunal biopsies from the remaining patients is still uncertain.

Summary

The dissecting microscopical appearances of 36 duodenal or jejunal biopsies from Australian children with the malabsorption syndrome or chronic diarrhoea are described. Three patterns
were observed: flat mucosa, thick-ridged mucosa, and mucosa characterized by leaf-like villi. The significance of leaf-like villi remains uncertain.

I should like to thank Professor T. Stapleton and Dr. D. Reye for their helpful advice and encouragement, the physicians of the Royal Alexandra Hospital for Children for allowing me to study patients under their care, and Mr. W. A. Noble who took the photographs.

REFERENCES
Dissecting Microscope Appearance of Small Bowel Mucosa in Children

John Walker-Smith

Arch Dis Child 1967 42: 626-630
doi: 10.1136/adc.42.226.626

Updated information and services can be found at:
http://adc.bmj.com/content/42/226/626.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/