A Case of Red Cell Aplasia in a Negro Child

J. M. IBRAHIM,* J. RAWSTRON, and J. BOOTH
From the Department of Paediatrics, King's College Hospital, London

Up to 1964 128 cases of congenital red cell aplasia had been reported (Table). All these were in Caucasian children and this was thought to be of genetic significance (Diamond, Allen, and Magill, 1961). Since then Khatua (1964) has described an 18-month-old Indian girl with red cell aplasia, whose chest radiograph showed an enlarged thymus gland, and who responded to steroids, while Shapiro, White, Diseker, and Bentley (1964) reported the condition in a negro girl with absent left kidney and ureter, who did not respond to steroids and who died at 4 months of age with pneumonia.

The present report of pure red cell aplasia is of interest, as it is possibly the result of administering phenylbutazone to the mother in the later months of pregnancy, and is only the second case to be reported in a negro child.

Case Report
A female negro child of Jamaican parents, aged 3 months, was admitted to the Belgrave Hospital on January 20, 1964, with extreme pallor. Four weeks before admission she had diarrhoea which was treated for one week with oral streptomycin. There was no history of bleeding or jaundice, and no family history of anaemia. This was the mother's sixth pregnancy. At the 33rd week she had a painful elbow and was given phenylbutazone 200 mg. three times a day for 7 days. Delivery was normal at term, following artificial rupture of the membranes. The baby's birth weight was 8 lb. 10 oz. (3,920 g.). She was breast fed for 10 weeks.

On admission she weighed 9 lb. 4 oz. (4,205 g.) and had no abnormal facial characteristics. The spleen and liver were not enlarged and no lymph nodes were palpable. The heart was enlarged, with a haemorrhagic systolic murmur at the left sternal border.

Investigations. Hb 2·0 g./100 ml. (14%): 30% Hb-A, 70% Hb-F (at age 14 months Hb-F 5% only): haematocrit 7%, MCHC 34%, reticulocytes 0·2%. WBCs 8,200/c.mm. (47% neutrophils, 45% lymphocytes, 8% metamyelocytes). Ample platelets. Blood group A Rh positive. Sickling test negative. Direct Coombs test negative. Red cell osmotic fragility normal. Serum iron 275 μg./100 ml. with fully saturated iron-binding capacity. Serum erythropoietin was raised (Dr. R. Sephton Smith). Mother's blood group A Rh +ve; sickling test negative.

Bone-marrow examination showed normal megakaryocytes and granulocyte precursors, but complete absence of red cell precursors. There were numerous macrophages containing iron-free granules.

The plasma electrolytes were normal, blood urea 69 mg./100 ml. (42 mg. 3 days later, 20-30 mg./100 ml. subsequently), total proteins 5·7 g./100 ml. with mild reduction in albumin and α-globulin (normal one month later), Wassermann reaction negative. A tryptophan loading test (70 mg. tryptophan/kg.) produced 1·2 micromoles of xanthurenic acid (normal 0·8-4·6) and 1·4 micromoles of anthranilic acid (normal up to 4·0) per kg. body weight in 7 hours.

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of Cases</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hughes (1961)</td>
<td>70</td>
<td>Estimated total number to 1960</td>
</tr>
<tr>
<td>Diamond et al. (1961)</td>
<td>8</td>
<td>Own cases</td>
</tr>
<tr>
<td>Bernard, Seligmann, Chassigneux, and Dresch (1962)</td>
<td>26</td>
<td>Reviewed their experience over 25 years with 30 cases, 4 of which were included in above total</td>
</tr>
<tr>
<td>Förare (1963)</td>
<td>2</td>
<td>Including 2 pairs of brothers and sisters</td>
</tr>
<tr>
<td>Jaso and Hurtado (1963)</td>
<td>2</td>
<td>Sibs of same father and different mothers</td>
</tr>
<tr>
<td>Lorenzo y de Ibarreta, Bidegain, Barahona, and Garofalo (1961)</td>
<td>1</td>
<td>Premature with cleft palate, congenital heart disease, and hepatosplenomegaly</td>
</tr>
<tr>
<td>Schorr, Cohen, Schwarz, and Wallerstein (1962)</td>
<td>1</td>
<td>A boy who, at 2 months, was given a 2-week course of chloramphenicol, but whose subsequent course suggested a congenital origin</td>
</tr>
<tr>
<td>Gordon and Varadi (1962)</td>
<td>1</td>
<td>Described as 'periodic erythroblastopenia'</td>
</tr>
<tr>
<td>Maurus and Fonteyne (1963)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Karstoft (1964)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>

Received May 26, 1965.

* Present address: Queen Elizabeth Hospital for Children, Hackney Road, London E.2.
Urine contained no bile pigments, a trace of protein, a few pus cells, and was sterile. Intravenous pyelogram was normal. Skeletal radiography was normal, and chest radiography showed a general enlargement of the heart outline, but no evidence of thymic enlargement.

Two transfusions of 150 ml. each raised the haemoglobin to 60% in 8 days (Fig.). Bone-marrow biopsy again showed absence of erythropoiesis. Prednisolone was started on February 16, 1964. One week later reticulocytes appeared in the peripheral blood, and rose to a peak of 22% in 12 days. Hb rose to 75% in 18 days, and fell gradually thereafter. There was also a noticeable rise in platelets up to 1 million/c.mm. Bone-marrow biopsy 2 weeks after starting steroids showed a regenerating cellular marrow with very active macronormoblastic erythropoiesis (L : E ratio 1 : 2). Macrocyes appeared in the peripheral blood. This was thought to be due to a relative deficiency of folic acid, but FIGLU test was normal (less than 2 mg./hour of formimino glutamic acid excreted after an oral dose of 4 g. histidine). Two weeks after stopping steroids Hb had fallen to 52% and reticulocytes to 0.5%. The bone marrow was poorly cellular with normal granulocytopenia and thrombocytopenia, but only a few intermediate and late normoblasts were seen. The serum iron had fallen to 40 μg./100 ml; with a total iron-binding capacity of 400 μg./100 ml. Oral iron was therefore given.

Hb and reticulocytes were estimated twice weekly thereafter. There were two peaks of reticulocytosis from 0 to 16.5% in 4 days and from 0 to 10% in 6 days, associated with upper respiratory tract infections at ages 7 and 9 months, and from 1 to 20% in 5 days accompanying a staphylococcal pneumonia at 17 months (Fig.). As no steroids were being given at these times, they were possibly due to endogenous steroid output accompanying the stress of infection. Two prolonged courses of prednisolone in September 1964 and January 1965 also resulted in good haematological response (Fig.). Bone-marrow biopsies at the time of each peak showed active regeneration of erythropoiesis, and in the intervals showed absence of erythropoiesis.

Discussion

Because of associated congenital anomalies in a few cases, a familial incidence in others, and a high urinary excretion of tryptophan intermediary metabolites in many, it is thought that congenital red cell aplasia is a hereditary metabolic defect in erythroid differentiation from stem cells. There were no congenital malformations in our case, nor a familial incidence, and tryptophan urinary metabolites were not increased.

We are not aware of any case of congenital red
A Case of Red Cell Aplasia in a Negro Child

Summary

A case of congenital red cell aplasia, the second to be reported in a negro child, is described. Reticulocytosis and rise in haemoglobin concentration followed courses of steroid or episodes of respiratory infection. The role of phenylbutazone administered to the mother 7 weeks before delivery is discussed.

We are grateful to Dr. C. Eric Stroud for allowing us to record this case.

REFERENCES


A case of red cell aplasia in a Negro child.

J. M. Ibrahim, J. Rawstron and J. Booth

Arch Dis Child 1966 41: 213-215
doi: 10.1136/adc.41.216.213

Updated information and services can be found at:
http://adc.bmj.com/content/41/216/213.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this online article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/