THE OSMOTIC CONCENTRATING ABILITY IN HEALTHY INFANTS AND CHILDREN

BY

E. POLÁČEK, J. VOCEL, L. NEUGEBAUEROVÁ, M. ŠEBKOVÁ, and E. VĚCHETOVÁ

with the technical co-operation of M. Kříšťan and B. Trousilová

From the Institute for Research in Child Development, Pediatric Faculty, Prague, First and Second University, Children's Departments, Prague, Infant Home, Prague-Krč, Children's Home, Kunratice, Czechoslovakia

(RECEIVED FOR PUBLICATION OCTOBER 16, 1964)

The concentrating ability of the kidney changes with age: after birth it increases (Smith, 1959), and in old age it falls (Lindeman, van Buren, and Raisz, 1960). The maximum osmolality during the newborn period is much lower than in adults (Heller, 1944; Smith, Yudkin, Young, Minkowski, and Cushman, 1949; Barnett and Vesterdal, 1953; Hansen and Smith, 1953; McCance and Widdowson, 1954; Calgagno and Rubin, 1960; Fisher, Pyle, Porter, Beard, and Panos, 1963). This smaller concentrating ability rapidly increases after birth, as shown by the significantly higher maximum osmolality of the urine in mature and some premature children in the second to fourth week of life (Pratt and Snyderman, 1953; Edelman, Barnett, and Trupkou, 1960), and may reach 1,473 mOsm./l. at the age of 35 days (Pratt, Bienvenu, Whyte, and Vesterdal, 1948), and 1,570 mOsm./l. at 73 days (Drescher, Barnett, and Trupkou, 1962). The osmolality of the urine of premature infants in the first month of life can be low (Calgagno, Rubin, and Weintraub, 1954), particularly in premature infants with a birth weight below 2,250 g. in comparison with that of mature infants of the same age (Vocel, Poláček, Neugebaurová, and Šebková, 1963). Results in a number of series of children investigated with various tests showed a tendency for maximum osmolality to increase after the second month of life (Winberg, 1959; Poláček and Polanská, 1962; Martinek, Janovský, and Stanincová, 1962) and even after the first year of life (Winberg, 1959; Poláček, 1962). The comparison of these data is difficult because the methods used to achieve increasing concentration of urine were diverse. For this reason it seemed desirable to investigate subjects from the early postnatal period up to adult life, using a single method. Since premature infants with a low birth weight react to fluid restriction with lower concentration of urine, and sometimes even by haemoconcentration and raised non-protein nitrogen (Vocel et al., 1963; Fisher et al., 1963), only those premature infants with a birth weight over 2,250 g. were included in the series.

Material and Methods

The following 212 children were included in the investigation: 32 newborn infants from the First University Obstetric Department, 13 premature infants with a birth weight above 2,250 g. in the First University Children's Department in Prague, 79 toddlers from the Children's Home in Kunratice, and 57 pre-school and school children in the Educational Department of the First University Children's Department in Prague. Children affected with serious disease and convalescents after acute illness were excluded. The concentration test was carried out by giving the children dried milk dissolved in half the usual amount of water with sugar added, for 24 hours, in amounts corresponding to their usual calorie intake. The preparation of full-cream milk was used for older children and a half-cream milk in younger infants. The urine was collected at intervals of about three hours and stored in the refrigerator. The temperature of infants and young children was taken frequently. If it rose above 37.5°C the experiment was stopped, but the result of this abbreviated test was also taken into the series. Osmolality was determined cryoscopically by a thermistor connected up to a Wheatstone bridge. The accuracy of the method was repeatedly checked by determining the depression of the freezing point on the same sample by the Beckmann thermometer. The difference between two measurements did not exceed 1%. Maximum osmolality was taken as the highest osmotic value attained in the urine samples. Unusually high osmolality was determined at least three times and the probability of the results confirmed by determining specific gravity and concentrations of Na, K, Cl, and urea.
FIG. 1.—Relation of maximum urine osmolality to age in healthy infants and children. Maximum urine osmolality of urine samples in course of 24-hour concentration test by means of double concentrated milk. Logarithmic scale for age.

TABLE 1

AVERAGE AND MAXIMUM URINE OSMOLALITY OF PREMATURE AND FULL-TERM INFANTS DURING FIRST WEEK OF LIFE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description of Infants</th>
<th>Diet</th>
<th>Urine Osmolality (mOsm./l.) on Different Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heller (1944)</td>
<td>23 full-term</td>
<td>Normal fluid intake</td>
<td>350-450 280-530 120-440 80-700 50-360 120-150</td>
</tr>
<tr>
<td>McCance and Widdowson (1954)</td>
<td>18 full-term</td>
<td>25 ml. water for first 48 hr.</td>
<td>375 465 — — — —</td>
</tr>
<tr>
<td>Smith et al. (1949)</td>
<td>10 prematures (1,530-2,260 g.)</td>
<td>Fluid withheld 52-5-112 hr.</td>
<td>± 91.5 ± 51 Maximum urine osmolality: 400-624</td>
</tr>
<tr>
<td>Hansen and Smith (1953)</td>
<td>3 full-term</td>
<td>Fluid withheld for first 72 hr.</td>
<td>— — —</td>
</tr>
<tr>
<td>Calgagno and Rubin (1960)</td>
<td>6 prematures</td>
<td>Cows' milk</td>
<td>Average urine osmolality: 318 (184-449) — —</td>
</tr>
<tr>
<td>Smith et al. (1949)</td>
<td>4 full-term</td>
<td>Low osmolar milk</td>
<td>Average urine osmolality: 157 (77-492) — —</td>
</tr>
<tr>
<td>Calgagno and Rubin (1960)</td>
<td>12 full-term</td>
<td>Modified evaporated milk</td>
<td>Average urine osmolality: 204 (114-454) — —</td>
</tr>
<tr>
<td>Calgagno and Rubin (1960)</td>
<td>14 full-term</td>
<td>+ carbohydrate formula</td>
<td>Average urine osmolality: 273 (70-408) — —</td>
</tr>
<tr>
<td>Calgagno and Rubin (1960)</td>
<td>9 full-term</td>
<td>Colostrum</td>
<td>— — — — — 5th to 8th day 610 (432-778)</td>
</tr>
<tr>
<td>Calgagno and Rubin (1960)</td>
<td>2 full-term</td>
<td>Transitional milk</td>
<td>— — — — 77 and 164</td>
</tr>
<tr>
<td>Calgagno and Rubin (1960)</td>
<td>4 h. after last feeding</td>
<td>Fluid withheld 72 hr., then</td>
<td>— — — — 149 94</td>
</tr>
<tr>
<td>Calgagno and Rubin (1960)</td>
<td>5% glucose for 24 h., then evaporated milk</td>
<td>5% glucose for 24 h., then breast milk</td>
<td>230 293 441 — — —</td>
</tr>
<tr>
<td>Barnet and Vesterdal (1953)</td>
<td>4 premaratures</td>
<td>Fluid withheld 72 hr., then</td>
<td>± 56 ± 40 ± 69 ± 24 ± 51 Serum Na — Serum Na — — Serum Na</td>
</tr>
<tr>
<td>Barnet and Vesterdal (1953)</td>
<td>5-8 days</td>
<td>4 h. after last feeding</td>
<td>— — — — 145 mEq/l. 150 mEq/l. 142 mEq/l.</td>
</tr>
<tr>
<td>Barnett and Vesterdal (1953)</td>
<td>60 full-term</td>
<td>5% glucose for 24 h., then</td>
<td>— — — —</td>
</tr>
<tr>
<td>Barnett and Vesterdal (1953)</td>
<td>15 premaratures</td>
<td>evaporated milk with 11 narts</td>
<td>— — — —</td>
</tr>
<tr>
<td>Fisher et al. (1963)</td>
<td>5% glucose for 24 h., then breast milk</td>
<td>water</td>
<td>— — — —</td>
</tr>
</tbody>
</table>

* Results given only in figures. Values estimated.
OSMOTIC CONCENTRATING ABILITY IN HEALTHY INFANTS

Fig. 2.—Regression line of maximum urine osmolality. Normal scale for age.

The general results are given in Fig. 1 in which the age is expressed logarithmically, and it shows that the maximum osmolality of the urine tends to increase with age. However, the regression line does not run linearly ($F = 1 \cdot 4$; $F(0.05, 200, 500) = 1.2$), but exponentially ($F = 0.955$). The unconverted course of the regression line is given in Fig. 2, which shows that the average maximum osmolality of the urine increases rapidly in the first few months of life and that subsequently the rate of increase progressively slows down.

Discussion

All authors give much lower values for the osmolality of the urine in the first week of life than at a later age. In Table 1 are set out the results of a number of investigations on the concentrating ability of premature and full-term infants during the first week of life.

In our series the average maximum osmolality of the urine was 515 mOsm./l. (S.D. 172, n = 17) on the 3rd day, which is in good accord with findings of Hansen and Smith (1953) who found values of 400-680 mOsm./l. in 3-day-old infants without fluid intake.

In our series the average maximum osmolality on the 6th day was 663 mOsm./l. (S.D. 133, n = 16), which is significantly higher than on the third day ($p < 0.01$) and corresponds approximately to values found by Barnett and Vesterdal (1953) in premature infants aged 5-8 days (432-778 mOsm./l.), but much higher than those quoted by Heller (1944) (on the 6th day 120-150 mOsm./l.) and by Fisher et al. (1963) (on the 6th day 94 mOsm./l. ± 51). These considerable differences in the results can be explained by the fact that in the last two groups the infants were given a small osmotic load with adequate fluid intake. Great diversity in the osmolality of the urine has been recorded from the end of the first week to the end of the first year. For this reason comparison should be restricted to investigations in which an increased osmotic load or a restriction of fluid intake has been employed or a combination of both. In Table 2 are set out the results of investigations in infants aged over 1 week up to 3 months.

We found that at the age of 10-30 days maximum osmolality of the urine amounted to an average value of 896 mOsm./l. (S.D. 179, n = 12). This value is significantly higher than the average maximum osmolality in this series at 6 days ($p < 0.001$). This corresponds to the osmolality of the urine reached by infants of Edelmann et al. (1960) fed on 8.9 g protein/kg.

The maximum osmolality noted in our infants aged 1-2 months reached an average of 1,054 mOsm./l. and is in agreement with the average osmolality in the infants of Pratt et al. (1948) after the first 24 hours of water restriction.

The osmolar concentrating ability of infants aged over 2 months was investigated by Winberg (1959). He first gave an intramuscular injection of pitressin tannate in oil (0.5 pressure units per 6 kg. body weight) and then deprived the infants of all fluid for 16 hours by leaving out one or two feeds. The regression line in Winberg's series rose up to 1 to 1.5 years. In children older than 3 years, Winberg recorded an average maximum osmolality of the urine of 1,069 mOsm./l. (S.D. 127, n = 16). Increase in urine osmolality with age in infants on a decreased fluid intake was noted by Martinek et al. (1962, Table 2).

In our series the regression line rises throughout the entire first year of life. In the children aged 10-12 months maximum urine osmolality reached an average of 1,118 (S.D. 154, n = 7) and was significantly higher than in infants aged 2-5 weeks ($p < 0.02$). The increase in the regression line persists, though more slowly after the first year of life. At 14-18 years the average osmolality of the urine reaches 1,362 (S.D. 109, n = 9), which is significantly higher than at the end of the first year ($p < 0.01$).

It is very probable that some children in our series
did not reach their maximum concentrating ability in the course of 24 hours. Others perhaps did not reach this limiting concentration. The results of Pratt et al. (1948), Drescher et al. (1962), and Sargent and Johnson (1954, 1956) furnish evidence that some children and young men can attain higher concentrations of the urine by more prolonged water restriction combined with adequate osmotic loading. Our experience (Poláček and Polanská, 1962) shows, however, that some healthy infants do not tolerate this prolonged water restriction without greatly increased temperature and other disturbances. The method described in this paper permitted the investigation of children in the same manner from the neonatal period up to puberty while sufficiently high values of urine osmolality were obtained.

Summary

A concentrating test was carried out in 212 children aged from 3 days to 18 years by giving them dried milk made up with half amount of water for 24 hours with addition of sugar and limited to the usual intake of calories. Urine was collected at three-hour intervals, and maximum osmolality of the urine was taken as the highest value found in the separate urine samples. This maximum urine osmolality increases with age from birth to puberty.

The average maximum urine osmolality values increase rapidly in the first months of life and then the increase is slower. There are significant differences between the average values of maximum urine osmolality on the 3rd day (515 mOsm./l.), the 6th day (663 mOsm./l.), the first month excluding the first week (896 mOsm./l.), the end of the first year (1,118 mOsm./l. at 10-12 months), and at puberty (1,362 mOsm./l. at 14-18 years). The regression line has an exponential character (Y = 1,400 × (1 − 0.943 × t −0.385)).

References

OSMOTIC CONCENTRATING ABILITY IN HEALTHY INFANTS

295

group.bmj.com on June 22, 2017 - Published by http://adc.bmj.com/Downloaded from
The Osmotic Concentrating Ability in Healthy infants and Children

E. Poláček, J. Vocel, L. Neugebauerová, M. Sebková and E. Vechetová

Arch Dis Child 1965 40: 291-295
doi: 10.1136/adc.40.211.291

Updated information and services can be found at:
http://adc.bmj.com/content/40/211/291.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/