HYDROGEN CONCENTRATION,
CARBON DIOXIDE TENSION AND ACID BASE BALANCE
IN BLOOD OF HUMAN UMBILICAL CORD AND
INTERVILLOUS SPACE OF PLACENTA

BY

G. ROOTH, S. SJÖSTEDT and F. CALIGARA

From the Departments of Obstetrics and Gynaecology and Internal Medicine, University Hospital, Lund,
and the Wenner-Gren Cardiovascular Research Laboratory, Norrtull Hospital, Stockholm, Sweden

(RECEIVED FOR PUBLICATION JUNE 23, 1960)

In a previous paper (Sjöstedt, Rooth and Caligara, 1960) we reported on the oxygen tension (PO₂) in
the blood of the human umbilical cord and the intervillous space of the placenta. It is the purpose
of this paper to report on the pH and the carbon dioxide tension (pCO₂) in blood from the same
sources in order to give a more complete picture of the gas exchange of the foetus and of its acid
base balance.

Material and Methods

The cord blood was investigated in 222 cases after
spontaneous delivery in vertex presentation; 154 of
the infants were normal and without any signs of asphyxia
before or after delivery; 46 had signs of asphyxia and 33
of these had slow or irregular heart beats during delivery
but showed no signs of asphyxia after birth. The other
13 cases had signs of mild asphyxia after birth. In
addition, 22 infants had meconium stained amniotic fluid
without any other signs of asphyxia.

During labour the mothers were given 'trilene'
(trichlorethylene) or nitrous oxide and in some cases
a few drops of chloroform at the moment of delivery.

The blood in the intervillous space was investigated in
27 cases, 25 of which were normal and two of which
had signs of mild toxæmia. The placenta was punctured
through the abdominal wall before labour had
started. Only local anaesthesia was used for the puncture
and no complications occurred. The technique
of the puncture has been described earlier by us (Sjöstedt
et al., 1960).

Great care was taken to obtain reliable information
about the time of gestation. Any case in which the
duration of pregnancy was doubtful was rejected from
the series on the effect of gestation time upon the pH,
pCO₂ or PO₂ of the blood.

The PO₂ was measured polarographically with the
Clark electrode as described by us (Rooth, Sjöstedt and
Caligara, 1959a).

The pH was measured with a radiometer type 22 pH
meter and an Astrup apparatus. The temperature was
kept at 37-0° C.

The pCO₂ was measured by the Astrup method (1956).
The principle is that the pH of the whole blood is first
measured anaerobically. After centrifugation, the
plasma is equilibrated with a gas of known pCO₂ (close
to 40 mm. Hg) and the pH is again measured. The
pCO₂ of the whole blood is then read off from the
nomogram of Astrup (1956).

Standard bicarbonate buffer base (BB) and base
excess (BE) are all terms which express the metabolic
acid-base balance of the blood. In order to calculate
those entities we used the nomogram of Siggaard Andersen
and Engel (1960). Instead of measuring the haemoglobin
in our cord blood we used a mean of 16-7 g./100 ml. blood, a figure which was established in a previous
study on 414 cord samples in this laboratory (Rooth and
Sjöstedt, 1957b). This introduces an error in the calculations
which, if the haemoglobin varies ±4 g./100 ml.
blood from 16-7 g., will make about ±1·3 mEq/litre
in BB, but scarcely any error in BE and standard
bicarbonate.

As the cord blood contains a considerable amount of
reduced haemoglobin which is more alkaline than
oxyhaemoglobin, this must be taken into account and
we have used the correction given by Siggaard Andersen
and Engel (1960) according to which 10 g. of reduced
haemoglobin increases the BB 0·3 mEq. The oxygen
saturation has been calculated from the pH and PO₂
measurements with the help of the dissociation curve
for the foetal blood established by us (Rooth et al.,
1959b).

BB is the buffering protein of the blood + buffering
bicarbonate. Henderson (1928) used this as an indicator
of the metabolic acid base balance of the blood,
but the term BB was introduced by Singer and Hastings
(1948).

Standard bicarbonate is another indicator of the
metabolic status introduced by Astrup (1956) and
Jørgensen and Astrup (1957). Standard bicarbonate is
the concentration of bicarbonate in plasma, when whole
blood has been equilibrated with carbon dioxide at a
pCO_2 of 40 mm. Hg at 38° C. and when the haemoglobin
is fully oxygenated. The carbon dioxide-bicarbonate
systems account for about 75% of the buffering action
of the blood against fixed acid and bases.

BE is the same as normal BB minus the actual BB.
The term BE was introduced by Astrup, Jørgensen,
Siggaard Andersen and Engel (1960). Consequently
BE directly expresses the excess in mEq of strong base
or acid for every litre of blood, when the normal mean
is arbitrarily fixed at zero. For the discussion of the
relative merits of these different entities the reader is
referred to the work of Astrup et al. (1960).

Results

Cord Blood

Hydrogen Concentration. The pH in the
umbilical vein in 142 normal cases and in the arteries
in 98 cases is given in Figs. 1 and 2. These figures
also give the pH in the vein of 44 cases grouped as
asphyxiated and 30 measurements from the arteries
in the same group. Finally they also show the
pH of the cases with meconium stained amniotic fluid. In this group measurements have been done
in 18 cases in the vein and in 11 cases in the umbilical
artery.

It will be observed that the pH is lower in the
asphyxiated and meconium groups than in the
normal cases (see also Table 2). In the normal
one, 54% of the cases have a pH in the vein which
is lower than 7.35. In the meconium group this
percentage is 72 and in the asphyxiated group 75.
In the arteries the pH is lower than 7.25 in 37% of
the normal cases, in 73% of the meconium group
and in 63% of the asphyxiated group

Table 1 gives the pH and PO$_2$ in the normal cases
for different gestation weeks. The material has
been divided into primigravidae and multigravidae.
It will be seen that the pH may decrease in the
umbilical arteries and vein when the gestation time
is 42 weeks or more, but PO$_2$ does not change with

Fig. 1.—Distribution of the pH in the umbilical vein in normal and asphyxiated infants and infants with meconium stained amniotic fluid.

Fig. 2.—Distribution of the pH in the umbilical arteries in normal and asphyxiated infants and infants with meconium stained amniotic fluid.
TABLE 1
MEAN HYDROGEN CONCENTRATION, CARBON DIOXIDE AND OXYGEN TENSION IN THE UMBILICAL CORD BLOOD AFTER NORMAL DELIVERY IN DIFFERENT GESTATION WEEKS

<table>
<thead>
<tr>
<th>Artery:</th>
<th>Gestation Week</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primigravidae</td>
<td>pH</td>
<td>7-27</td>
<td>7-27</td>
<td>7-22</td>
<td>7-25</td>
<td>7-26</td>
<td>7-28</td>
<td>7-24</td>
<td>7-25</td>
<td>7-25</td>
</tr>
<tr>
<td>No.</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>30</td>
<td>44</td>
<td>47</td>
<td>45</td>
<td>41</td>
<td>57</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pO₂</td>
<td>24</td>
<td>19</td>
<td>21</td>
<td>19</td>
<td>23</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>15</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multigravidae</td>
<td>pH</td>
<td>7-34</td>
<td>7-30</td>
<td>7-29</td>
<td>7-29</td>
<td>7-30</td>
<td>7-21</td>
<td>7-25</td>
<td>7-27</td>
<td>7-27</td>
</tr>
<tr>
<td>No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>16</td>
<td>13</td>
<td>7</td>
<td>9</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>30</td>
<td>38</td>
<td>45</td>
<td>51</td>
<td>41</td>
<td>49</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pO₂</td>
<td>31</td>
<td>27</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>18</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>pH</td>
<td>7-27</td>
<td>7-34</td>
<td>7-29</td>
<td>7-23</td>
<td>7-26</td>
<td>7-28</td>
<td>7-23</td>
<td>7-22</td>
<td>7-26</td>
</tr>
<tr>
<td>No.</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>32</td>
<td>22</td>
<td>11</td>
<td>8</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>30</td>
<td>41</td>
<td>46</td>
<td>49</td>
<td>45</td>
<td>53</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pO₂</td>
<td>24</td>
<td>31</td>
<td>22</td>
<td>20</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>33</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td>97</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
MEAN OXYGEN TENSION, HYDROGEN CONCENTRATION, CARBON DIOXIDE TENSION, STANDARD BICARBONATE, BUFFER BASE AND BASE EXCESS IN THE UMBILICAL CORD BLOOD AFTER NORMAL DELIVERY OR AFTER DELIVERY WITH DIFFERENT SIGNS OF ASPHYXIA

<table>
<thead>
<tr>
<th>Artery:</th>
<th>pO₂ (mm. Hg)</th>
<th>No.</th>
<th>pH</th>
<th>No.</th>
<th>pCO₂ (mm. Hg)</th>
<th>Standard Bicarbonate</th>
<th>Buffer Base (mEq/litre)</th>
<th>Base Excess</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal cases</td>
<td>18-3</td>
<td>104</td>
<td>7-26</td>
<td>98</td>
<td>45</td>
<td>14-8</td>
<td>34-7</td>
<td>-12-2</td>
<td>25</td>
</tr>
<tr>
<td>Slow or irregular heart beats before delivery</td>
<td>17-6</td>
<td>21</td>
<td>7-21</td>
<td>22</td>
<td>55</td>
<td>16-2</td>
<td>36-7</td>
<td>-10-2</td>
<td>12</td>
</tr>
<tr>
<td>Meconium stained amniotic fluid</td>
<td>16-4</td>
<td>14</td>
<td>7-20</td>
<td>11</td>
<td>51</td>
<td>10-8</td>
<td>27-6</td>
<td>-19-4</td>
<td>2</td>
</tr>
<tr>
<td>Asphyxiated after delivery</td>
<td>14-5</td>
<td>7</td>
<td>7-16</td>
<td>8</td>
<td>39</td>
<td>12-9</td>
<td>31-9</td>
<td>-15-1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vein:</th>
<th>pO₂ (mm. Hg)</th>
<th>No.</th>
<th>pH</th>
<th>No.</th>
<th>pCO₂ (mm. Hg)</th>
<th>Standard Bicarbonate</th>
<th>Buffer Base (mEq/litre)</th>
<th>Base Excess</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal cases</td>
<td>29-2</td>
<td>137</td>
<td>7-33</td>
<td>142</td>
<td>38</td>
<td>17-6</td>
<td>39-2</td>
<td>-7-7</td>
<td>6</td>
</tr>
<tr>
<td>Slow or irregular heart beats before delivery</td>
<td>28-9</td>
<td>31</td>
<td>7-31</td>
<td>31</td>
<td>41</td>
<td>18-0</td>
<td>39-8</td>
<td>-7-1</td>
<td>20</td>
</tr>
<tr>
<td>Meconium stained amniotic fluid</td>
<td>28-4</td>
<td>18</td>
<td>7-30</td>
<td>18</td>
<td>44</td>
<td>15-8</td>
<td>36-3</td>
<td>-10-6</td>
<td>16</td>
</tr>
<tr>
<td>Asphyxiated after delivery</td>
<td>27-6</td>
<td>11</td>
<td>7-24</td>
<td>13</td>
<td>44</td>
<td>14-6</td>
<td>34-1</td>
<td>-13-9</td>
<td>5</td>
</tr>
</tbody>
</table>
advancing gestation time, a fact which has been shown by us previously (Sjöstedt et al., 1960). There is also a tendency for the pH to be lower in primigravidas than in multigravidas.

Carbon Dioxide Tension. The distribution of the pCO₂ values in the cord blood of the normal cases is shown in Fig. 3. The mean values of pO₂, pH and pCO₂ are given in Table 2 for the normal cases and the groups with various signs of asphyxia. The first group had slow or irregular heart beats before the delivery, but no signs of asphyxia after birth. The second group had meconium stained amniotic fluid, but no other signs of asphyxia before or after birth. The third group showed signs of asphyxia after the delivery, manifested by diminished muscular tonus and/or delayed onset of spontaneous respiration. No case of severe asphyxia was studied in this series.

It will be observed that pCO₂ in the umbilical arteries and vein is higher in the asphyxiated than in the normal cases. The asphyxiated cases also have reduced pO₂ and pH. The changes are of about the same magnitude in the arteries and the vein though perhaps a little more pronounced in the arteries.

Although the number of observations in the different gestation weeks is small there seems to be an increase of the pCO₂ in the umbilical vein blood with advancing gestation. No such increase can be observed in the arteries.

Acid Base Balance. The distribution of the standard bicarbonate and BB in 56 normal cases from the vein and in 25 normal cases from the arteries is given in Fig. 4. The mean values for the metabolic acid base balance are shown in Table 2. The number of pathological cases is small especially in the arteries. There is a metabolic acidosis in the infants asphyxiated after birth and in those with meconium stained amniotic fluid.
The relation between the pO₂ and pCO₂ in the umbilical vein and arteries is given in Fig. 5. It will be seen that if the pO₂ decreases, the pCO₂ increases, as would be expected in any situation which obstructs the normal passage of gas from the mother and vice versa.

Intervillous Blood of the Placenta. The figures for the pO₂, pH, pCO₂ and the metabolic acid base balance in 27 samples from the intervillous blood of the placenta are given in Table 3. Compared with the umbilical blood, the intervillous blood has higher pO₂, pH, standard bicarbonate and BB. The pCO₂ is lower than in the umbilical artery and the same as in the umbilical vein.

Discussion

Hydrogen Concentration. The present investigation corroborates and extends knowledge about the pH of the cord blood. A detailed discussion of earlier works has recently been published by Kaiser (1959). Table 4 shows the pH values available in the literature after 1932.

These studies have established that the pH of the umbilical arteries is lower than that of the umbilical vein. The pH of the umbilical vein in its turn is lower than that of the maternal vein and artery. In this respect it is perhaps better to make a comparison with the pH of the intervillous blood, which we have found to be 7.41 against 7.33 for the

Table 3

<table>
<thead>
<tr>
<th>Case</th>
<th>pO₂ (mm. Hg)</th>
<th>pH</th>
<th>pCO₂ (mm. Hg)</th>
<th>Standard Bicarbonate</th>
<th>Buffer Base (mEq/litre)</th>
<th>Base Excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>7.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>7.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>7.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>7.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>7.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>7.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>7.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>7.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>7.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>51</td>
<td>7.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>38</td>
<td>7.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>48</td>
<td>7.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>7.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>35</td>
<td>7.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>48</td>
<td>7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>7.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>48</td>
<td>7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>35</td>
<td>7.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>40</td>
<td>7.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>41</td>
<td>7.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>37</td>
<td>7.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>45</td>
<td>7.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>44</td>
<td>7.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>40</td>
<td>7.41</td>
<td>38</td>
<td>23.2</td>
<td>45.8</td>
<td>+0.3</td>
</tr>
<tr>
<td>Mean umbilical artery</td>
<td>18</td>
<td>7.26</td>
<td>45</td>
<td>14.8</td>
<td>34.7</td>
<td>−12.2</td>
</tr>
<tr>
<td>Mean umbilical vein</td>
<td>29</td>
<td>7.33</td>
<td>38</td>
<td>17.6</td>
<td>39.2</td>
<td>−7.7</td>
</tr>
</tbody>
</table>
umbilical vein. It will be seen from Fig. 1 that there are more cases with a pH between 7.35 and 7.40 than in any other group. Thus the pH difference between the intervillous maternal blood and the umbilical vein is small in normal cases. The pH of foetal blood increases during its passage through the placenta, indicating that this blood is giving up carbon dioxide and/or fixed acids. This will be discussed later.

The highest mean pH values in the umbilical vein given in the literature are those of Wulf (1959b), Eastman (1932) and Noguchi (1937). Wulf gives the high value of 7.41 and the others give 7.36. Noguchi also has the highest value in the umbilical artery, i.e. 7.32. The largest series (MacKinney, Goldberg, Ehrlich and Freymann, 1958) consisting of 200 cases before respiration has a mean of only 7.29. Most of the investigators have a mean of about 7.32. These variations are probably due, in the main, to differences in technique, particularly in the pH standard, and in material. If the pH is high and the technique sound, this indicates that the cases are normal and the pH values represent the true intrauterine figures.

Kaiser (1959), in his review, states that no information is available about alkalosis in the umbilical cord blood. It is true that the figures so far discussed are those of a mild acidosis. It must be remembered, however, that this expression is used solely because the pH is lower than the conventionally given figure for adult arterial blood and that the term acidosis in this sense has no pathological significance. As seen from Fig. 1, in 24 venous samples we have found a pH of 7.40 and above. In comparison with the mean pH of the umbilical vein this may be called alkalosis. In 40 normal cases Wulf (1959a) found eight with a pH higher than 7.40, i.e. about 20% of the total cases, as in the present series. The foetus cannot decrease its pCO₂ and thereby increase the pH as the respiring individual does. The only way for the foetus to achieve this is if the pCO₂ of the intervillous blood decreases, i.e. by hyperventilation of the mother. This also occurs during labour and values of arterial maternal pCO₂ of less than 30 mm. Hg have been found by Boutourline-Young and Boutourline-Young (1956) and Weisbrot, James, Prince, Holaday and Apgar (1958).

If the infant is asphyxiated the pH is reduced in the umbilical arteries and vein. This decrease in pH is first seen in the arteries (Table 2). In the umbilical vein the pH is reduced particularly in those cases showing definite signs of asphyxia after birth. The pH is then about 0.1 units lower than the normal mean. As seen in Table 4, Eastman (1932) and James, Weisbrot, Prince, Holaday and Apgar (1958) report much lower values. The reason is that these authors analysed cases with severe asphyxia, whereas our cases were only mild. A few of our asphyxiated infants as well as a few of our normal infants have shown very low pH values (Figs. 1 and 2). Very low values even in vigorous infants have also been found in cord blood oxygen saturation studies and have been discussed earlier by us (Rooth and Sjöstedt, 1957a).

As seen in Table 1, there is a tendency for the pH to be lower in the cord blood of the primigravidae than in that of the multigravidae. As the pCO₂ is the same, this could be explained by more difficult labour during which the mother and/or the foetus has increased production of lactic acid and other fixed acids.

Carbon Dioxide Tension. Tables 5 and 6 give a survey of some pCO₂ and oxygen saturation values available in the literature. A survey of pO₂ values has earlier been given by us (Sjöstedt et al., 1960). It can be seen from these Tables that our material, whether earlier or from the present series, shows high pO₂ or oxygen saturation values and low pCO₂ values. Our pH values are of the same magnitude as those established by others, suggesting that our cases are perhaps nearer to normal than those studied by others. This has a special interest in view of the fact that many authors are very cautious about figures obtained from cord blood drawn after delivery. The higher the pO₂ and oxygen saturation and the lower the pCO₂ the higher the probability that the figures represent the original intrauterine conditions. It seems reasonable to assume that the true intrauterine level for the pCO₂ is about 40 mm. Hg for the umbilical artery.

Table 4
SURVEY OF UMBILICAL CORD BLOOD pH STUDIES

<table>
<thead>
<tr>
<th>Author</th>
<th>Artery</th>
<th>Vein</th>
<th>Artery</th>
<th>Vein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH</td>
<td>No.</td>
<td>pH</td>
<td>No.</td>
</tr>
<tr>
<td>Normal cases:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastman (1932)</td>
<td>7.33</td>
<td>3</td>
<td>7.36</td>
<td>8</td>
</tr>
<tr>
<td>Noguchi (1937)</td>
<td>7.32</td>
<td>14</td>
<td>7.36</td>
<td>14</td>
</tr>
<tr>
<td>Kaiser (1953)</td>
<td>7.26</td>
<td>12</td>
<td>7.32</td>
<td>12</td>
</tr>
<tr>
<td>Goodlin and Kaiser (1957)</td>
<td>7.28</td>
<td>28</td>
<td>7.32</td>
<td>28</td>
</tr>
<tr>
<td>James et al. (1938)</td>
<td>7.26</td>
<td>30</td>
<td>7.33</td>
<td>30</td>
</tr>
<tr>
<td>Kaiser and Goodlin (1958)</td>
<td>7.23</td>
<td>40</td>
<td>7.33</td>
<td>40</td>
</tr>
<tr>
<td>MacKinney et al. (1958)</td>
<td>7.25</td>
<td>45</td>
<td>7.33</td>
<td>45</td>
</tr>
<tr>
<td>Wulf (1959a)</td>
<td>7.30</td>
<td>36</td>
<td>7.41</td>
<td>36</td>
</tr>
<tr>
<td>Present series</td>
<td>7.26</td>
<td>98</td>
<td>7.33</td>
<td>142</td>
</tr>
<tr>
<td>Asphyxiated cases:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastman (1932)</td>
<td>7.04</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noguchi (1937)</td>
<td>7.24</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>James et al. (1958)</td>
<td>7.04</td>
<td>10</td>
<td>7.23</td>
<td>20</td>
</tr>
<tr>
<td>Wulf (1959)</td>
<td>7.18</td>
<td>20</td>
<td>7.23</td>
<td>20</td>
</tr>
<tr>
<td>Present series</td>
<td>7.20</td>
<td>41</td>
<td>7.29</td>
<td>62</td>
</tr>
</tbody>
</table>
The arteriovenous difference in pCO₂ of about 7 mm. Hg is a measure of the carbon dioxide given up to the maternal circulation in the placenta. In 26 cases we have found the pCO₂ of the intervillos blood of the placenta to be on an average 40 mm. Hg or identical with that of the foetal pCO₂ of the umbilical vein. These figures indicate an almost complete exchange of CO₂ across the placenta as opposed to the oxygen transport. The difference in pH₂ is about 10 mm. Hg (Sjöstedt et al., 1960). These differences between oxygen and carbon dioxide are to be expected from the higher diffusion coefficient for carbon dioxide.

No previous comparison seems to have been made between the intervillous pCO₂ and the pCO₂ of the foetal circulation in man. Beer, Bartels and Raczkowski (1955) assume for their calculations a complete equilibration. In animals with a syndesmochorial placenta five layers thick such as cows and sheep, pressure differences of about 20 mm. Hg have been found (Roos and Romijn, 1940). In rabbits with a haemoendothelial placenta, Young (1952) has observed values between 14 and -2 mm. Hg.

Darling, Smith, Asmussen and Cohen (1941) calculated the relation between pH and pO₂ if the pH of the foetal blood is changed by varying the pCO₂. Consequently there is a relation between pCO₂ and pO₂ and this is evident also from Fig. 5.

Acid Base Balance. Compared with the mother the foetus has a metabolic acidosis (Table 3) and it can be seen that in comparison with the umbilical vein, the umbilical artery has a metabolic acidosis (Table 3 and Fig. 4). Expressed in BB the mean difference between the arteries and the vein is about 4.5 mEq/litre. This difference is a measure of the fixed acids which pass from the foetal to the maternal circulation. Once pulmonary ventilation starts after birth the BB of the arteries and the veins is similar to that in adult blood. Because of the error inherent in our way of estimating the metabolic acid base balance, the present series cannot be used for an exact determination of the normal values in cord blood, but the values are of the same order as those of James et al. (1958).

As already shown by Eastman (1932) the slightly asphyxiated foetus compared with the normal foetus has no metabolic acidosis, whereas those with more pronounced asphyxia have low bicarbonate content as a sign of metabolic acidosis. These findings are confirmed and expressed in the more exact form of BB by James et al. (1958).

Our material is small but the same tendency is present.

Summary

The cord blood of 222 infants has been analysed for pH, pCO₂, pO₂ and metabolic acid base balance expressed as standard bicarbonate, BB and BE.

From the placenta 26 samples of intervillous blood have been analysed in the same way and the results are compared with the cord blood in order to show the gas exchange of the foetus.

The mean pH after normal delivery is 7.26 in the umbilical artery and 7.33 in the umbilical vein.

The mean pCO₂ after normal delivery is 45 mm. Hg in the umbilical artery and 38 mm. Hg in the vein.

The mean BB after normal delivery is 35 mEq/litre in the umbilical artery and 39 mEq/litre in the vein, indicating that during the passage through the placenta the foetal blood gives up fixed acids to the maternal circulation.
In the intervillosus blood of the placenta the mean pH is 7.41, the mean pCO₂ 38 mm. Hg and the mean BB 46 mEq/litre.

The pCO₂ in the umbilical vein and the intervillosus space of the placenta are the same, 38 mm. Hg, indicating an almost complete exchange of carbon dioxide between the foetal and maternal circulation.

This study was supported by grants from the Association for the Aid of Crippled Children, New York, U.S.A., the Swedish Medical Research Council, Uppsala and Svenska Nationalforeningen mot tuberkulos och andra folksjukdomain, Stockholm, Sweden.

REFERENCES
Hydrogen Concentration, Carbon Dioxide Tension and Acid Base Balance in Blood of Human Umbilical Cord and Intervillous Space of Placenta

G. Rooth, S. Sjöstedt and F. Caligara

Arch Dis Child 1961 36: 278-285
doi: 10.1136/adc.36.187.278

Updated information and services can be found at:
http://adc.bmj.com/content/36/187/278.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/