THE ABSORPTION OF CHLORAMPHENICOL IN THE NEWBORN

BY

DONOUGH O'BRIEN*

From the Institute of Child Health, Hammersmith Hospital, London

(RECEIVED FOR PUBLICATION OCTOBER 30, 1952)

The increasing prevalence of penicillin-resistant organisms, particularly staphylococci, in neonatal infections has led to the wider use of the more recent antibiotics. The absorption of one of these, chloramphenicol, has been studied in adults (Ley, Smadel and Crocker, 1948) and in children (Kelly, Hunt and Tashman, 1951; Ross, Burke and Rice, 1952). There is, however, no adequate published information on this subject in the newborn. At this age antibiotics are often given more or less prophylactically for quite minor infections, so that the problem of the correct dosage cannot be resolved by clinical results. The alternative is to give an amount which maintains a plasma level in excess of the in vitro sensitivity of the organisms. As there are good reasons for supposing that the absorption of the drug may be different in the first 10 days of life, the previous studies on children and older infants have been repeated for this age group. The investigation is based on 173 observations on 68 infants. Reports of cases of aplastic anaemia following the use of chloramphenicol (Gill, 1950; Wilson, Harris, Henstell, Witherbee and Kahn, 1952) have accentuated the need for a more cautious and informed administration of the drug.

Materials and Method

A microbiological assay was used employing a strain of El Tor vibrio which was completely inhibited by a concentration of 0·5 μg. per ml. The method is essentially that of Gray (1952), which is in turn a simplification and improvement of the original technique of Doorenbos and Kop (1951). A stock culture was maintained on a plain agar slope incubated aerobically at 37°C, subcultures being made approximately weekly.

Administration. The palmitate suspension was given just before the feed either by spoon or in a bottle diluted with an equal amount of expressed breast milk or dried milk mixture. The crystalline preparation was individually dispensed and added to the feed as a powder. No difficulty was experienced in giving the drug in either form, but a number of infants receiving the higher doses of both preparations vomited after 24 to 48 hours of the course and continued until the drug was stopped. No other suggestions of toxicity were encountered, but in two cases not included in the trial oral thrush developed after 48 hours on doses of approximately 25 mg. per kg. six-hourly. In one of these Monilia was also found on a buttoc rash.

Sampling. All assays were performed upon 1 ml. venous samples taken into sterile tubes containing 200 I.U. of dried heparin. These were then centrifuged and the plasma withdrawn. Where possible the assay was completed forthwith, but specimens which had to be kept overnight were stored at —28°C.

Assay. For the actual estimation a convenient dilution (solution A) of the plasma was made. This was 1 in 10 where the anticipated levels were below 20 μg. per ml., and 1 in 15 or 1 in 20 when higher levels were expected. For this purpose a 0·04 ml. constant drop Dreyer pipette was used, held vertically, delivering at the rate of one drop per second. The diluent was Armour peptone water (pH 7·2) with 1% dextrose and 1% Andrade's indicator added. The diluted plasma was then heated in a water-bath for 20 minutes at 60°C, thus destroying the normal inhibitory action of plasma on the growth of the vibrio (Doorenbos and Kop, 1951). Serial dilutions of solution A were then made with Dreyer pipettes in sterile 3 in. by ½ in. test tubes, using the same diluent. Ten tubes were used, the first containing 10 drops of A and none of peptone water, the second nine drops of A and one of peptone water, and so on until the tenth tube, which contained one drop of solution A and nine of peptone water. Two control tubes each containing 0·4 ml. of diluent were also set up with each batch. All tubes except one of the controls were inoculated with a 5 mm. diameter wire loopful of an overnight growth of the vibrio in plain peptone water. The cultures were incubated at 37°C. for 18 hours. Where growth occurred the culture became pink. The tube containing the lowest concentration of chloramphenicol which inhibited growth was taken to contain 0·5 μg. per ml.

The sensitivity of the organism was titrated against known concentrations of pure crystalline chloramphenicol in plain peptone water at intervals throughout the trial, although not with each batch of readings. In

* Grocer's Company Research scholar.
all cases the organism was completely inhibited at a concentration of 0.5 μg per ml. and grew at 0.4 μg per ml.

Results and Discussion

The blood levels recorded at intervals after different doses of both crystalline and palmitate chloramphenicol are shown in Tables 1 and 2. The number of venipunctures on any one infant were deliberately limited. Infants who regurgitated or vomited part of any dose have been excluded.

These figures confirm the wide range in the rate and degree of absorption of the drug that has been a feature of previous studies on older infants and children. The levels two hours after administration of the crystalline preparation were of the same order as those found by Kelly et al. (1951); however, in the newborn, they appeared to be maintained for longer, and where the dose was repeated six-hourly maximum concentrations were attained in 24 hours. At this interval 25 mg. per kg. maintained levels substantially in excess of 10 μg per ml., which is the minimal inhibitory concentration in vitro for the majority of susceptible organisms (Bliss and Todd, 1949). In most of the cases this level was attained in two hours.

Chloramphenicol palmitate was absorbed more slowly, less effectively, and over a longer period than the crystalline form. Plasma levels in general above 10 μg per ml. could be maintained by a dose of 25 mg. per kg. six-hourly. Such a dose would be incapable of effecting an adequate therapeutic level in the first few hours. This could be accomplished in most cases, however, by giving an initial dose of 100 mg. per kg.

Summary and Conclusions

Crystalline chloramphenicol was more quickly and completely absorbed in the newborn than the palmitate form, the use of the latter offering no particular advantages.
A dosage of 25 mg. per kg. of the crystalline preparation six-hourly, and 100 mg. per kg. of the palmitate initially followed by 25 mg. per kg. six-hourly, is suggested.

I wish to thank Professor A. A. Moncrieff for permission to carry out these investigations on infants under his care, and also Dr. J. D. Gray for the strain of El Tor vibrio and for his help and advice. Messrs. Parke Davis and Co. kindly supplied both the chloramphenicol palmitate and the pure crystalline chloramphenicol for standardization.

REFERENCES
Gray, J. D. (1952). Personal communication.
The Absorption of Chloramphenicol in the Newborn

Donough O'Brien

Arch Dis Child 1953 28: 66-68
doi: 10.1136/adc.28.137.66

Updated information and services can be found at:
http://adc.bmj.com/content/28/137/66.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/