BILE PIGMENTS IN THE STOOLS OF INFANTS

BY

S. D. V. WELLER

From The Hospital for Sick Children, Great Ormond Street, London

(RECEIVED FOR PUBLICATION MARCH 8, 1950)

In the normal person bilirubin is converted in
the gut into stercobilin. However, unaltered bile
pigment occurs in meconium and in the stool of
any individual with much intestinal hurry, and has
also been shown to be passed at times by some older
infants, though this fact does not seem to be widely
known. The absence of stercobilin from the stool is
usually taken as evidence for total biliary obstruction,
and infants with unduly prolonged neonatal jaundice
may thus be suspected of having atresia of the bile
ducts. Such children have been transferred to this
hospital where the absence of stercobilin has been
confirmed, but abundant bilirubin has been found
in the stools. These children have made a sponta-
aneous recovery.

The Present Investigation

It was decided to take a random sample of infants
under 4 months of age who were not suspected of
having obstructive jaundice and to test their stools
for bilirubin and stercobilin.

The methods used were the qualitative ones
described by Harrison (1947). Fouchet’s reagent
was used to detect bilirubin, and a spectroscopic
examination was made for stercobilin. These tests
are quick and simple to perform and are probably
the ones most used in England at the present time.
They are not very delicate, but it was felt that this
was an advantage, since we wished to discover
whether a normal infant could ever produce a stool
containing so little pigment that it could not be
qualitatively detected by these usual tests. Ladd
(1935) pointed out that babies with total biliary
atresia may pass a small amount of pigment, which
presumably reaches the interior of the gut either
in bile-stained digestive secretions or by desquama-
tion of jaundiced epithelial cells. In our experience
of these cases the qualitative tests used in this
investigation have always given either a totally
negative result or indicated only a very faint trace
of pigment.

One hundred and two infants admitted to the
hospital were tested, some on several occasions, and
where stercobilin was absent at the first test, further
specimens were examined at intervals until the
pigment appeared, or until the baby died or was
discharged.

Results

Stercobilin was not detected in the stools of 23
children. Of these, 21 gave a negative reaction at
the first test, and two gave a similar reaction when
the pigment had previously been present. Neither
of these two children had diarrhoea or jaundice at the
time. Another child gave negative tests up to the
161st day of life, a positive being recorded on the
167th day.

Fourteen of these 23 children were observed to
develop a positive test for stercobilin. Coincident-
ally the bilirubin reaction became weaker or negative.
No stool (in over 160 tests) was devoid of both
pigments.

Of the 102 children, 21 were totally breast-fed
up to the time of the test, and all gave a positive
Fouchet test in their stools. The stercobilin results
are shown according to age distribution in Table 1.

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>0-4</th>
<th>5-8</th>
<th>9-12</th>
<th>13-15</th>
<th>16-20</th>
<th>20+</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stercobilin</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Stercobilin</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

It will be readily seen that a negative stercobilin
test was common in the first weeks; in fact, of the
six youngest children in the series, only one (aged
4 days) showed a spectroscopic band of stercobilin.
It was absent in 43% of all the breast-fed cases.

There were 81 children who had been bottle-fed
to some extent before the test. Many had been
partially or totally on the breast at an earlier period.
Bilirubin was found in the stools of about half
(40 cases). Where it was present in small quantity,
stercobilin was always found, but where there was a
large amount of bilirubin, stercobilin was usually
absent. Table 2 shows the stercobilin results in age groups.

Table 2

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>0–4</th>
<th>5–8</th>
<th>9–12</th>
<th>13–16</th>
<th>17–20</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stercobilin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>7</td>
<td>5</td>
<td>69</td>
</tr>
<tr>
<td>Stercobilin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Stercobilin was therefore absent from less than 15% of the stools of bottle-fed babies at the first test. This finding was unusual even in the first month of life, but did occur in normal children up to at least 16 weeks of age.

Combining the two tables, the total figures reached are those of Table 3.

Table 3

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>0–4</th>
<th>5–8</th>
<th>9–12</th>
<th>13–16</th>
<th>17–20</th>
<th>20+</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stercobilin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>16</td>
<td>29</td>
<td>23</td>
<td>8</td>
<td>5</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Stercobilin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>21</td>
</tr>
</tbody>
</table>

The colour of the stools was not a reliable index of the pigment content. Several pale green stools gave a negative Fouchet’s test, and three whitish specimens contained stercobilin. The stercobilin-negative and bilirubin-negative stools showed the same wide range of colours.

No significant correlation was found between stool pigment and any particular condition for which admission to hospital had been advised.

Discussion

It is obvious that testing for stercobilin alone cannot prove jaundice to be obstructive in an infant. Our results indicate that either bilirubin or stercobilin is always present in the stool of a normal child, and that tests for both pigments must be used. The absence of both is strong evidence for total biliary obstruction. Further, it is possible in normal infants for stercobilin to disappear temporarily. The two babies in whom this occurred were bottle-fed at the time, and stercobilin remained absent for two and three weeks respectively.

The unreliability of the stercobilin test is greater in the first two months of life, and greater in breast-fed than bottle-fed babies.

Comparison of Tables 1 and 2 suggests (though the figures are not large enough to do more) that bilirubin normally persists for some time in the stools of breast-fed babies; that stercobilin is absent at least as often as it is present in breast-fed infants under one month old; and that stercobilin tends to appear earlier in bottle-fed babies.

It has been known at least since 1840 that unchanged bile pigments may predominate in the stools of newborn infants (Simon). Since that time the pigment excretion in the faeces has been studied by various workers, and Schorlemmer (1900) pointed out that stercobilin appeared later in the stools of breast-fed than artificially fed babies. Isolated observations have been made of bilirubin being present for long periods—up to 14 months (Giaume and Lanza, 1929)—but it usually disappears earlier than this. Certainly the age by which bilirubin disappears from the stool is variable and may depend on the bacterial population of the gut, and this in turn may be affected by the diet and manner of feeding.

A number of quantitative studies of faecal pigment excretion have been made since Ylppö (1913) estimated the bilirubin output in the first 14 days of life. Snelling (1933) studied the urobilinogen (stercobilin) excretion. Ross, Waugh, and Malloy (1937), in an investigation of icterus neonatorum, made quantitative estimations of the pigments in the stools and urine of normal babies in the first week of life. All 35 babies investigated showed measurable quantities of both urobilin and bilirubin throughout the first week. In fact, their figures were startlingly higher than those of earlier workers, ranging from 11.5 to 57.5 mg. of bilirubin per day, and from 33.5 to 69.3 mg. of urobilin per day. Tat, Greenwalt, and Dameshek (1943) in a similar investigation found far smaller amounts, their figures for the first five days being from 1 to 23 mg. (average 8.6 mg.) per day of bilirubin, and from a trace to 0.7 mg. of urobilin per day. Thus they found about a quarter as much bilirubin and a fiftieth as much urobilin. These discrepancies are remarkable. It is perhaps significant that there are so many different methods for the estimation of these pigments, and this may reflect their unreliability. At any rate, no group of workers in this field has used methods identical with those employed by others. It would seem that the problem of the quantitative excretion of bile pigments needs more exhaustive investigation.

Behrendt (1949) in his work on diagnostic tests for infants and children states that in the differential diagnosis of jaundice 'in over half of the cases, the diagnosis of obstructive jaundice can be made by analysing the urine for bilirubin and urobilinogen.' He neither discusses the value of tests on the stools nor describes any method for detection of stool pigments, nor does he describe how the diagnosis of obstructive jaundice is reached in the cases where urinary analysis is inconclusive.
The tests employed in this investigation are easy to perform, quick and widely used in this country, and the results show that so long as both tests are employed it is improbable that a case of neonatal jaundice will be falsely labelled obstructive.

Summary

Over 160 stools were tested from 102 infants under 4 months of age without obstructive jaundice. In 20% of babies stercobilin was not detected. It is therefore necessary to test for both bilirubin and stercobilin to prove biliary obstruction in children of this age group.

I should like to express my deep indebtedness to Dr. W. W. Payne for his help and advice in this work, and to his technical staff for their unfailing cooperation.

References

Schorlemmer, R. (1900). *Arch. Verdaukr.*, 6, 263.

Bile Pigments in the Stools of Infants

S. D. V. Weller

Arch Dis Child 1951 26: 86-88
doi: 10.1136/adc.26.125.86

Updated information and services can be found at:
http://adc.bmj.com/content/26/125/86.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/