I-squared

No, not \(-1\), the self-multiplication of that fancy imaginary number that helps aircraft designers make wings work properly, but a (semi) quantitative assessment of how much heterogeneity there is in a meta-analysis: \(I^2\).

You will recall that the idea of heterogeneity (mixed-up-ness) comes in both statistical and clinical flavour.\(^1\) This measure—\((I^2)\)—assesses the statistical aspect. It is often to be found at the bottom of a forest plot, near some other numbers (\(\tau^2\) and \(\chi^2\)).

The principle of \(I^2\) is straightforward. It gives you an idea of the 'percentage of variation which is beyond that you'd expect by chance alone'. It can be interpreted, approximately, like this:

- 0%–25%: just chance, really,
- 25%–50%: bit more than just chance, but unless clinically odd, probably acceptable. With a grain of salt.
- 51% plus: Woah! Really, quite different. Should you be doing a summary estimate here at all?

(Flashback again: the underlying assumption of fixed-effect meta-analysis is that the only variation between the studies is chance. Random effects gives you an average effect over an average population in an average trial with the average outcome measure.\(^2\))

There are problems with \(I^2\); if there are very few studies (<5), it probably underestimates heterogeneity, and if there are lots of studies (>40 or so) then it certainly overestimates it. And it is actually a point estimate in itself (and should be given with its own CI… but that is just too complicated to try…). And it is not really giving you a value you can assess the absolute amount of 'extra', to try to assess how clinically meaningful that 'beyond chance'ness would be. But frankly, if those sorts of things really bother you then you will probably be able to interpret \(\tau^2\) directly and calculate your own prediction intervals.\(^3\)

Bob Phillips

Correspondence to Dr Bob Phillips, Centre for Reviews and Dissemination, University of York, York YO10 5DD, UK; bob.phillips@doctors.org.uk

Competing interests None declared.

Provenance and peer review Commissioned; internally peer reviewed.

Accepted 17 April 2015

Arch Dis Child 2015;100:594. doi:10.1136/archdischild-2015-308813

REFERENCES

Towards evidence based medicine for paediatricians

Bob Phillips

Arch Dis Child 2015 100: 594
doi: 10.1136/archdischild-2015-308813

Updated information and services can be found at:
http://adc.bmj.com/content/100/6/594.2

These include:

References
This article cites 2 articles, 2 of which you can access for free at:
http://adc.bmj.com/content/100/6/594.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
ADC Archimedes (260)
Competing interests (ethics) (206)
Journalology (262)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/