Article Text

PDF

O-125 Mesenchymal Stem – Or Stromal Cells From The Developing Human Lung Are Perturbed By Hyperoxia
  1. MA Möbius1,
  2. S Koß2,
  3. RK Ohls3,
  4. M Rüdiger2,
  5. B Thébaud4
  1. 1Sprott Centre for Stem Cell Research Ottawa/Ontario/Canada, Universitätsklinikum "Carl Gustav Carus", Dresden, Germany
  2. 2Neonatology and Pediatric Critical Care Medicine, Universitätsklinikum "Carl Gustav Carus", Dresden, Germany
  3. 3Department of Pediatrics/Division of Neonatology, University of New Mexico, Albuquerque, USA
  4. 4Sprott Centre Fo Stem Cell Research, University of Ottawa and Children’s Hospital of Eastern Ontario, Ottawa / Ontario, Canada

Abstract

Exposure of the immature lung to oxygen concentrations higher that the ones in utero – relative (room air) or absolute hyperoxia - represents a major risk factor for the development of bronchopulmonary dysplasia (BPD) in preterm infants. Here, we isolated resident CD146pos./GD-2neg. mesenchymal stem- or stromal cells (MSCs) from human fetal lungs at the canalicular stage of development (16th–18th week of gestation) to obtain new insights into their behaviour in conditions reflecting normal (5% O2) and oxygen disrupted (21% and 60% O2) lung development. We compared them to potentially therapeutic MSCs isolated from the umbilical cord stroma.

First, we were able to show that the mesenchyme of the fetal lung is abundant in MSCs, suggesting an important role of these cells in lung development. Single-cell plating of lung MSCs in physiological hypoxic and ambient oxygen atmospheres revealed profound reductions of colony-forming ability and colony size in normoxic conditions. Furthermore, when exposed to absolute hyperoxic (60% O2) atmospheres, MSCs lost ability to form colonies, reduced expression of stem cell-restricted proteins like Oct-4 and Sox2, proliferated and switched cytokine secretion profiles towards a pro-fibrotic, pro-inflammatory phenotype. Alterations in the composition of the extracellular matrix were observed. Conversely, MSCs from the umbilical cord secreted high amounts of anti-fibrotic and lung-protecting proteins like PGE2 and stanniocalcin-1.

We conclude that the physiological function of resident lung MSCs is affected by relative and absolute hyperoxia, suggesting a key role of these cells in the immature lung responding to extrauterine oxygen conditions.

Abstract O-125 Figure 1

Proliferation and Colony-formation of human fetal lung MSCs depends on oxygen tension

Support (Bengt-Robertson-Award): Charles-Christopher Roehr.

Statistics from Altmetric.com

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.