Reference values for pulse oximetry at high altitude

M J Gamponia, H Babaali, F Yugar, R H Gilman

Abstract

Objective—To determine reference values for oxygen saturation (SaO₂) in healthy children younger than 5 years living at high altitude.

Design—One hundred and sixty eight children were examined for SaO₂ at 4018 m above sea level, during well child visits. Physiological state was also noted during the examination.

Results—The mean SaO₂ was 87.3% (95% confidence intervals (CI) 86.7%, 87.9%) with a median value of 87.7%. A significant difference was observed in SaO₂ between children younger than 1 year compared with older children, although the difference was no longer demonstrable when sleeping children were excluded.

Conclusions—This study has provided a reference range of SaO₂ values for healthy children under 5 years old so that pulse oximetry may be used as an adjunct in diagnosing acute respiratory infections. Younger children were also shown to have a lower mean SaO₂ than older children living at high altitude, which suggests physiological adaptation to high altitude over time. In addition, sleep had a lowering effect on SaO₂, although the clinical importance of this remains undetermined.

Keywords: pulse oximetry; oxygen saturation; high altitude; reference values

Pulse oximetry measures beat to beat arterial oxygen saturation (SaO₂) transcutaneously, and is related to the partial pressure of arterial oxygen (PaO₂) through the oxyhaemoglobin dissociation curve. In the USA and other developed countries, pulse oximetry is used for rapid assessment of children who present to emergency rooms in respiratory distress. An accurate correlation between the measurement of oxyhaemoglobin saturation of blood and transcutaneous oxygen tension has been well documented in previous investigations. However, as a diagnostic tool, pulse oximetry has the advantages that it is non-invasive, easy to use, and gives an SaO₂ reading within seconds after application of the transducer. Certainly, its use merits consideration in less developed countries, where acute respiratory infection accounts for a large proportion of childhood mortality.

In Bolivia, where most of the population lives at altitudes between 3000 and 4200 m above sea level, the under 5 childhood mortality rate is 75–90 deaths/1000 live births, with acute respiratory infection as a leading cause of death. Although pulse oximetry as a diagnostic tool for acute respiratory infection in a high altitude setting is currently under evaluation, reference values in healthy children must be described first. Four previous studies have shown an adaptation to low oxygen tension by describing oxygen saturation reference values for children living at high altitude: in Denver, Colorado at an altitude of 1610 m above sea level; in Bogota, Columbia at 2640 m; in Summit County, Colorado at 2800 m; and in the Peruvian Andes at 3700 m. In the latter study, Reuland et al noted a significant disparity between the mean SaO₂ values for infants and children 1–5 years old. In this study, our objective was to determine the reference values of oxygen saturation, respiratory rate, and heart rate in a sample of healthy children living in El Alto, Bolivia. Located 10 km from the centre of La Paz, El Alto is a rapidly growing city of 500 000 people at 4018 m above sea level. Additional goals were to establish further hypothesised relations between age and oxygen saturation, and different physiological activity states and oxygen saturation at high altitude. These relations might contribute to the increased susceptibility of infants to hypoxia during acute respiratory infection in the high sierras.

Subjects and methods

This study was approved by the institutional review boards of Johns Hopkins University and PROSALUD, a Bolivian non-governmental organisation that provides primary and preventive health care services. One hundred and sixty eight healthy children who presented to four PROSALUD clinics in the city of El Alto were enrolled in this descriptive observational study from July 1994 to October 1994. All of the children were lifetime residents of El Alto and nearly 100% were Aymara Indian. They ranged in age from 1 day to 60 months and were visiting the ambulatory outpatient clinics for well child check ups, immunisations, or other minor non-pulmonary problems. Enrollment was stratified into five age groups: 0–5, 6–11, 12–23, 24–35, and 36–60 months. Exclusion criteria were based on the following factors: a history of chronic illness, such as asthma or congenital cardiac anomalies; the presence of chest retractions, rhonchi, wheezing, rales, or heart murmur on physical examination; a history of respiratory illness within the last two months; a history of blood transfusion within the last six months; and obvious malnutrition.
Gamponia, Babaali, Yugar, Gilman

Increasing age was associated with a decrease in mean heart rate (p < 0.05; ANOVA) and respiratory rate (p < 0.05; ANOVA). Sleeping children were excluded (mean 87.2%). No significant differences in SaO2 were detected when sleeping children were excluded (mean SaO2 87.2%; 95% CI 86.7%, 87.9%; p = 0.07; Mann-Whitney). Comparing all groups individually with each other, increasing age was associated with a decrease in mean heart rate (p < 0.05; ANOVA) and respiratory rate (p < 0.05; ANOVA).

Informed consent was obtained before examination. Respiratory rate, heart rate, and three pulse oximetry readings were obtained for each child using a Nellcor N-10 self-calibrating pulse oximeter and an appropriately sized adhesive transducer placed on the index finger, thumb, or large toe of each subject. In most instances, the subject was awake and quietly resting. Bright lights and excessive motion were avoided during transducer application to minimise artefacts. For the saturation of oxygen to register, the oximeter had to track the peripheral pulse for at least 10 seconds. Measurements were discarded if not consistent with other readings.

Respiratory rate, heart rate, and mean oxygen saturation recordings for each subject were entered into an Epi Info 6 database and a descriptive statistical analysis was performed to calculate the mean and median values and 95% confidence intervals (CI). In addition, Kruskal-Wallis and ANOVA tests (or Mann-Whitney or Student’s t tests where appropriate) were completed to compare the different means among age stratified groups.

Results

Mean and median values were obtained for oxygen saturation, respiratory rate, and heart rate in the different age groups (table 1). The mean SaO2 for all age groups was 87.3% (95% CI 86.7%, 87.9%) with a median of 87.7%. No significant differences in SaO2 were observed by the Kruskal-Wallis test (p = 0.10; 7.67), or Mann-Whitney tests among age stratified groups. Although, as a group, children less than 1 year old (groups 1 and 2) had a lower mean oxygen saturation than older children (12-60 months) (mean 86.4%; 88%), this difference was not significant when sleeping children were excluded (mean 87.2%; 88.1%; p = 0.07; Mann-Whitney). Comparing all groups individually with each other, increasing age was associated with a decrease in mean heart rate (p < 0.05; ANOVA) and respiratory rate (p < 0.05; ANOVA).

Table 1 Summary of oxygen saturation, respiratory rate, and heart rate for different age groups

<table>
<thead>
<tr>
<th>Group (age in months) (mean age)</th>
<th>n</th>
<th>Oxygen saturation (%)</th>
<th>Respiratory rate (breaths/min)</th>
<th>Heart rate (beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (95% CI)</td>
<td>Median</td>
<td>Mean (95% CI)</td>
</tr>
<tr>
<td>1 (0–5) (1.85)</td>
<td>40</td>
<td>86.9 (85.4, 88.4)</td>
<td>87.0</td>
<td>45.5 (41.4, 49.5)</td>
</tr>
<tr>
<td>2 (6–11) (8.87)</td>
<td>31</td>
<td>85.7 (84.3, 87.2)</td>
<td>86.3</td>
<td>41.5 (37.7, 45.2)</td>
</tr>
<tr>
<td>3 (12–23) (17.6)</td>
<td>33</td>
<td>87.5 (85.9, 89.1)</td>
<td>88.7</td>
<td>37.0 (33.3, 40.6)</td>
</tr>
<tr>
<td>4 (24–35) (28.7)</td>
<td>32</td>
<td>88.1 (87.1, 89.0)</td>
<td>87.7</td>
<td>33.5 (31.2, 35.9)</td>
</tr>
<tr>
<td>5 (36–60) (47.5)</td>
<td>32</td>
<td>88.5 (87.6, 89.3)</td>
<td>88.8</td>
<td>32.0 (29.7, 34.3)</td>
</tr>
<tr>
<td>Total</td>
<td>168</td>
<td>87.3 (86.7, 87.9)</td>
<td>87.7</td>
<td>36.2 (34.6, 37.9)</td>
</tr>
</tbody>
</table>

No significant difference comparing all groups individually to each other (p = 0.10; Kruskal-Wallis). Infants (age 0–11 months) had a lower mean oxygen saturation than older children (12–60 months) (mean 86.4%; 88%), this difference was not significant when sleeping children were excluded (mean SaO2 87.2%; 95% CI 86.7%, 87.9%; p = 0.07; Mann-Whitney). Comparing all groups individually with each other, increasing age was associated with a decrease in mean heart rate (p < 0.05; ANOVA) and respiratory rate (p < 0.05; ANOVA).

Table 2 Summary of oxygen saturation, respiratory rate, and heart rate for different age groups excluding sleeping children

<table>
<thead>
<tr>
<th>Group (age in months) (mean age)</th>
<th>n</th>
<th>Oxygen saturation (%)</th>
<th>Respiratory rate (breaths/min)</th>
<th>Heart rate (beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (95% CI)</td>
<td>Median</td>
<td>Mean (95% CI)</td>
</tr>
<tr>
<td>1 (0–5)</td>
<td>29</td>
<td>87.8 (86.2, 89.4)</td>
<td>88.0</td>
<td>46.0 (40.9, 51.1)</td>
</tr>
<tr>
<td>2 (6–11)</td>
<td>28</td>
<td>86.7 (85.5, 87.8)</td>
<td>87.0</td>
<td>42.2 (38.2, 46.2)</td>
</tr>
<tr>
<td>3 (12–23)</td>
<td>33</td>
<td>87.5 (85.9, 89.1)</td>
<td>88.7</td>
<td>37.0 (33.3, 40.6)</td>
</tr>
<tr>
<td>4 (24–35)</td>
<td>31</td>
<td>88.2 (87.2, 89.2)</td>
<td>87.7</td>
<td>33.6 (31.3, 36.0)</td>
</tr>
<tr>
<td>5 (36–60)</td>
<td>31</td>
<td>88.6 (87.8, 89.5)</td>
<td>89.0</td>
<td>32.3 (30.4, 34.6)</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>87.8 (87.1, 88.4)</td>
<td>88.0</td>
<td>38.0 (36.3, 39.8)</td>
</tr>
</tbody>
</table>

Table 3 Summary of oxygen saturation, respiratory rate, and heart rate by physiological state

<table>
<thead>
<tr>
<th>State</th>
<th>n</th>
<th>Oxygen saturation (%)</th>
<th>Respiratory rate (breaths/min)</th>
<th>Heart rate (beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (95% CI)</td>
<td>Median</td>
<td>Mean (95% CI)</td>
</tr>
<tr>
<td>Awake, quiet</td>
<td>128</td>
<td>88.0 (87.8, 88.1)</td>
<td>88.3</td>
<td>38.0 (36.2, 39.9)</td>
</tr>
<tr>
<td>Breast or bottle feeding</td>
<td>4</td>
<td>83.5 (81.0, 86.0)</td>
<td>83.0</td>
<td>38.5 (30.0, 47.0)</td>
</tr>
<tr>
<td>Crying</td>
<td>19</td>
<td>87.5 (86.2, 88.6)</td>
<td>87.5</td>
<td>39.1 (31.2, 45.0)</td>
</tr>
<tr>
<td>Asleep</td>
<td>16</td>
<td>83.0 (80.0, 85.9)</td>
<td>83.3</td>
<td>40.1 (34.3, 46.0)</td>
</tr>
</tbody>
</table>

Children who were asleep had a significantly lower mean oxygen saturation than children in other physiological states (p < 0.05; Mann-Whitney).
numbers of infants sleeping. Sleeping infants tended to have lower SaO2 mean and median values (table 4), but this difference did not achieve statistical significance (Mann-Whitney, p = 0.14, 2.14). Crying does not appear to have an effect on SaO2. When we excluded crying children from our analysis, there were no (or minimal) changes in SaO2 values (table 5).

Discussion

The findings of this study confirm mean lower oxygen saturations in children living at high altitudes, as has been shown previously.10–13 It appears that this phenomenon occurs only at altitudes above 1600 m.10–13 15 16

In addition, we found a significant difference in oxygen saturation between infants and older children living at high altitudes. The trend was similar to an observation by Reuland et al that, in general, younger children have lower mean SaO2 values—a relation seen only at altitudes above 3000 m.13 However, we also found that sleeping was associated with a decrease in mean SaO2. When we excluded sleeping children from the study, the difference, although present, no longer reached statistical significance. Further studies with larger numbers of awake children will be needed to determine if the difference in SaO2 in younger versus older children at high altitude is indeed present. We had expected infants to have a lower mean SaO2 than older children for the following reasons: during the first year of life, many of the physiological compensations stimulated by low oxygen tension may not yet be developed; infants have comparatively less functional residual capacity than older children; and their smaller airways generate a higher airway resistance.17

During the first few months of life, the neonate may be able to compensate for low oxygen tension because fetal haemoglobin (HbF), which has a greater affinity for the oxygen molecule, is still present. At birth, fetal haemoglobin comprises 80% of an infant’s total haemoglobin, but diminishes to 5% after 140 days.19 Because 2,3-diphosphoglycerate (2,3-DPG) interacts less strongly with HbF than with haemoglobin A, the result is a shift to the left of the oxygen dissociation curve.19 Although the presence of fetal haemoglobin may lead to poorer unloading of oxygen in the venous blood, it is advantageous in oxygen loading in the lungs,20 which serves as a possible explanation for our observation. After reaching 12 months of age, the child may begin to develop functional compensatory mechanisms for long term adaptation to high altitude. These compensatory mechanisms include polycythaemia, enhanced alveolar growth during the first eight years of life, an increase in capillary proliferation in the peripheral tissues, and changes in oxidative enzymes.20 Because the adaptive response in respiratory physiology appears to be environmental rather than genetic, these mechanisms are probably not yet present in neonates.21 This relation, however, was not a finding of the study by Lozano et al in Bogata, Columbia, which provided reference values for children 5 days to 24 months old at an altitude of 2640 m and found a significant difference in mean SaO2 only for the subgroups of children less than 1 month old and those 13–18 months old.11 In addition, a recent study of children born in Lhasa, Tibet showed that Tibetan infants had a higher arterial oxygen saturation at birth and during the first four months of life than Han newborns. The authors concluded that genetic adaptations might permit adequate oxygenation and confer resistance to the syndrome of subacute infantile mountain sickness.22

In any case, we believe that children younger than 1 year old are particularly vulnerable to acute respiratory infection; they are multiply disadvantaged because they have less mature immune systems,23 less physical ability to clear secretions, and less verbal communicability to convey distress.

The 1994 Encuesta Nacional Demografia y Salud for Bolivia also supports the idea that children less than 1 year old might be more susceptible to acute respiratory infections:
during interviews for the survey, the prevalence of acute respiratory infection over the past two weeks was 13% for children 0–5 months, 25% for children 6–11 months, 18% for children 12–23 months, and 17% for children 24–35 months.

With regard to levels of activity, as noted previously, the sleep state confers a significantly lower mean oxygen saturation than other physiological states. We speculate that because recumbency occurs with sleep, it is usually associated with mildly decreased functional residual capacity, owing to pulmonary atelectasis, which results in the child taking more frequent and shallower breaths. In newborns, it is also well documented that during active sleep, there is loss of diaphragmatic and intercostal muscle tone. In addition, Nicholas et al have observed reductions in SaO₂ during sleep and crying, but only in the presence of either upper or lower respiratory tract infections. The clinical significance of this observation is uncertain and perhaps may play a role in sudden infant death syndrome.

The limitations of pulse oximetry, which is not reliable when the subject is experiencing hypothermia, hypovolaemia, shock, extreme hypoxia (PaO₂ >100), or extreme hyperoxia (PaO₂ >100), may play a role in sudden infant death syndrome. The fundamental problem is that the use of pulse oximetry, SaO₂, might eventually be considered a fifth vital sign in the World Health Organisation diagnostic algorithm, which provides guidelines for the treatment of acute respiratory infection based on the presence of chest retractions and tachypnoea. We have also shown that younger children have a lower mean SaO₂ than older children living at high altitude, which suggests physiological adaptation to high altitude over time. Although sleep had a lowering effect on SaO₂, the clinical importance of this effect remains undetermined.

We gratefully acknowledge the contributions of P Putney, J Antó, C Cullier, O LaFuente, F Gomez-Sanchez, F Armijo, and the staff of PROSALUD to the development and implementation of this project. This research was supported by the USAID Office of Science and Technology, INTERMAP, and the RGIER Fund, grant number HR5600G003040.

CONCLUSION

This study provides a definition of normal SaO₂ in a healthy population of children under 5 years old living at high altitude. With the use of pulse oximetry, SaO₂ might eventually be considered a fifth vital sign in the World Health Organisation diagnostic algorithm, which provides guidelines for the treatment of acute respiratory infection based on the presence of chest retractions and tachypnoea. We have also shown that younger children have a lower mean SaO₂ than older children living at high altitude, which suggests physiological adaptation to high altitude over time. Although sleep had a lowering effect on SaO₂, the clinical importance of this effect remains undetermined.

We gratefully acknowledge the contributions of P Putney, J Antó, C Cullier, O LaFuente, F Gomez-Sanchez, F Armijo, and the staff of PROSALUD to the development and implementation of this project. This research was supported by the USAID Office of Science and Technology, INTERMAP, and the RGIER Fund, grant number HR5600G003040.

Reference values for pulse oximetry at high altitude

Reference values for pulse oximetry at high altitude

M J Gamponia, H Babaali, F Yugar and R H Gilman

Arch Dis Child 1998 78: 461-465
doi: 10.1136/adc.78.5.461

Updated information and services can be found at:
http://adc.bmj.com/content/78/5/461

These include:

References
This article cites 17 articles, 6 of which you can access for free at:
http://adc.bmj.com/content/78/5/461#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
TB and other respiratory infections (641)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/